

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

UG (B.E) Scheme 2024-25 Physics Cycle - I Semester

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru-74

Engineering Science Courses (ESC) - I/II							Emerging Technology Courses (ETC) - I/II							
Sl. No	Course Code	Name of the Course	L	T	P	Sl. No	Course Code	Name of the Course	L	T	P			
1	B24ESCK141/241	Introduction of Civil Engineering	3	0	0	1	B24ETCK151/251	Smart Materials and Systems	3	0	0			
2	B24ESCK142/242	Introduction to Electrical Engineering	3	0	0	2	B24ETCK152/252	Concepts of Green Buildings	3	0	0			
3	B24ESCK143/243	Introduction to Electronics	3	0	0	3	B24ETCK153/253	Introduction to sustainable Engineering	3	0	0			
4	B24ESCK144/244	Introduction to Mechanical Engineering	3	0	0	4	B24ETCK154/254	Renewable Energy Sources	3	0	0			
5	B24ESCK145/245	Introduction to C Programming	2	0	2	5	B24ETCK155/255	Waste Management	3	0	0			
						6	B24ETCK156/256	Introduction to IoT	3	0	0			
			_			7	B24ETCK157/257	Introduction to Embedded Systems	3	0	0			
						8	B24ETCK158/258	Introduction to Cyber Security	3	0	0 -			

	Program	ming Language Course (PLC) - I/II			
Sl. No	Course Code	Name of the Course	L	T	P
1	B24PLCK151/251	Introduction to web programming	2	0	2
2	B24PLCK152/252	Introduction to Python programming	2	0	2
3	B24PLCK153/253	Basics of Java programming	2	0	2
4	B24PLCK154/254	Programming with C++	2	0	2

Example: B24MACS101

В	24	MA	CS	1	01
Bachelor Degree	Scheme	Course Code	Stream	Semester	Course Serial No

Example: B24PWSK206

В	24	PWS	K	2	06
Bachelor Degree	Scheme	Course Code	Common Course	Semester	Course Serial No

Dean-Academics

DEAN ACADEMICS Rajarajeswari College of Engineering Bengaluru - 560 074.

Principal RAJARAJESWARI COLLECE OF THEINTERING

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru-74

Name of the branch: CSE, CSD Stream: CSE Sem : I Academic Year: 2024-25 Group: Physics

					Teac	hing Ho	ours / W	eek	E	xamir	atio	1	SDA
S.No	Cour and C	se Category Course Code	Course Title	TD / PSB	Lecture	Tutorial	Practical	Credits	tration in Hours	E Marks	E Marks	tal Marks	10
					L	Т	Р		Du	IJ	SE	Toi	
1.	ASC(IC)	B24MACS101	Mathematics - I for CS	Maths	2	2	2	4	3	50	50	100	
2.	ASC(IC)	B24PHCS102	Applied Physics for CS	Physics	2	2	2	4	3	50	50	100	
3.	ESC	B24POPC103	Principles of Programming using C	CSE	2	0	2	3	3	50	50	100	
4.	ESC-1	B24ESCK142	Introduction to Electrical Engineering.	EEE	3	0	0	3	3	50	50	100	
5.	ETC-1	B24ETCK156	Introduction to IoT	Any Dept.	3	0	0	3	3	50	50	100	
6.	AEC	B24ENGK106	Communicative English	Humanities	1	0	0	1	3	50	50	100	
7.	HSMC	B24HCIK107	Constitution of India	Humanities	1	0	0	1	1	50	50	100	
8.	AEC/SDC	B24IDTK108	Innovation and Design Thinking	Any Dept.	1	0	0	1	1	50	50	100	
	9			TOTAL	15	04	06	20		400	400	800	

SDA: Skill Development Activity, TD/PSB: Teaching department/Paper setting board, ASC: Applied Science Course, ESC: Engineering Science Course, ETC: Emerging Technology Course, AEC: Ability Enhancement Course, HSMC: Humanities, Social Science and Management Course, SDC: Skill Development Course, CIE: Continuous Internal Evaluation, SEE: Semester End Examination

Dean-Academics DEAN ACADEMICS

Rajarajeswari College of Engineering Bengaluru - 560 074.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru-74

Name of the branch: AIML, CSE(IC) Stream: CSE Sem : I Academic Year: 2024-25 Group: Physics

				_	Те	aching H	Iours / We	ek		Examina	tion		SDA
S.No	Course an	d Course Code	e Course Title		Lecture	Tutorial	Practical	Credits	Juration in Hours	CIE Marks	SEE Marks	otal Marks	
					L	Т	Р		-		•	E	
1.	ASC(IC)	B24MACS101	Mathematics - I for CS	Maths	2	2	2	4	3	50	50	100	
2.	ASC(IC)	B24PHCS102	Applied Physics for CS	Physics	2	2	2	4	3	50	50	100	_
3.	ESC	B24POPC103	Principles of Programming using C	CSE	2	0	2	3	3	50	50	100	
4.	ESC-1	B24ESCK143	Introduction to Electronics	ECE	3	0	0	3	3	50	50	100	
5.	ETC-1	B24ETCK156	Introduction to IoT	Any Dept.	3	0	0	3	3	50	50	100	_
6.	AEC	B24ENGK106	Communicative English	Humanities	1	0	0	1	3	50	50	100	
7.	HSMC	B24HCIK107	Constitution of India	Humanities	1	0	0	1	1	50	50	100	
8.	AEC/SDC	B24IDTK108	Innovation and Design Thinking	Any Dept.	1	0	0	1	1	50	50	100	
				TOTAL	15	04	06	20		400	400	800	

SDA: Skill Development Activity, TD/PSB: Teaching department/Paper setting board, ASC: Applied Science Course, ESC: Engineering Science Course, ETC: Emerging Technology Course, AEC: Ability Enhancement Course, HSMC: Humanities and Social Science and Management Course, SDC: Skill Development Course, CIE: Continuous Internal Evaluation, SEE: Semester End Examination

esee **Dean-Academics**

DEAN ACADEMICS Rajarajeswari College of Engineering Bengaluru - 560 074.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

UG (B.E) Syllabus 2024-25 I Semester – Physics Cycle

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

	CONTENTS OF SYLLABUS	
	I Semester – Physics Cycle	
Sl No	Particulars	Page No.
1	Computer Science & Engineering	1.20
2	Computer Science & Design	1-20
3	Artificial Intelligence & Machine Learning	21.40
4	CSE (IoT, Cyber Security including Blockchain Technology)	21-40
5	Common Courses – Physics Cycle	41-50

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

UG (B.E) Syllabus 2024-25

I Semester – Physics Cycle

Computer Science and Engineering (CSE) Computer Science and Design (CSD)

SEMESTER I							
Mathematics-I for CS							
Course Code	:	B24MACS101	CIE	:	50 Marks		
Teaching Hours L: T :P	:	2:2:2	SEE	:	50 Marks		
Total Hours	:	50 Hours	Total	:	100 Marks		
Credits	:	4	SEE Duration	:	3Hrs		

	Course Objectives
1	Develop the knowledge of Linear Algebra referring to matrices.
2	Develop the knowledge of solving engineering problems of pedal equation and Taylors series
3	Analyze engineering problems by applying Partial Differential Equations.
4	Develop the knowledge on fundamentals of arithmetic
5	Develop the knowledge of solving differential equations and their applications in engineering.

Module-1: Linear Algebra-I	10hrs.
Rank of a matrix by elementary row transformations. Consistency of linear system of equations. Solution of	
linear system of equations: Gauss elimination, Gauss Jordan, and Gauss-Seidel methods, Rayleigh's Power	1
Method to find the dominant eigen value and eigen vector of a square matrix.	1
Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix	
by Cayley- Hamilton theorem.	
Applications: Boolean matrix, Network Analysis, Markov Analysis, Critical point of a Network system,	
Optimum solution.	
Module-2: Polar curves	10hrs.
Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves.	
Pedal equation. Curvature and Radius of Curvature-Cartesian, Parametric, Polar and Pedal forms (Proof	
only for Cartesian and Polar Forms). Taylor's and Maclaurin's series expansion for one variable (Statement	
only)– problems.	
Self-study: Centre and circle of curvature, evolutes, and involutes.	
Applications: Computer graphics, Image processing.	
Module-3: Partial Derivatives	10hrs.
Evaluation of indeterminate forms. Function of two or more variables, Partial derivatives, Differentiation of	
composite functions. Jacobians (direct examples). Maxima and Minima of functions of two variables and problems.	
Self-study: Method of Lagrange's undetermined multipliers with single constraint. Euler's and Euler's	1
extension theorem and problems.	
Applications: Series expansion in computer programming, Computing errors and approximations.	
Module-4: Modular Arithmetic	10hrs.
Introduction to Divisibility, GCD and Congruences, Linear Congruences, The Remainder theorem, Solving Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's Theorem, Wilson	
Theorem and Fermat's little theorem. Applications of Congruences- RSA algorithm.	1
Self-study: Properties of Prime Numbers, Fundamental theorem of Arithmetic	
Applications: Cryptography, encoding and decoding, RSA applications in public key encryption.	1
Module-5: Differential Equations	10hrs.
Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations. Integrating	1
factors on $\frac{1}{N}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$ and $\frac{1}{M}\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)$, Orthogonal trajectories. Problems. Non-linear differential	
equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible	
to Clairaut's equations -Problems.	
Self-Study: Applications of ODEs, Solvable for x and y.	
Applications: Rate of Growth or Decay, Conduction of heat	

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

List of Laboratory experiments (2 hours/week per batch) 10lab sessions + 1repetition class + 1 Lab Assessment

1	2D plots for Cartesian and polar curves
2	Finding angle between polar curves, curvature and radius of curvature of a given curve
3	Finding partial derivatives and Jacobian
4	Applications to Maxima and Minima of two variables
5	Solution of first-order ordinary differential equation and plotting the solution curves
6	Finding GCD using Euclid's Algorithm
7	Solving linear congruence's $ax \equiv b(modm)$
8	Numerical solution of system of linear equations, test for consistency and graphical representation
9	Solution of system of linear equations using Gauss-Seidel iteration
10	Compute Eigen values and Eigen vectors and find the largest and smallest eigen value by Rayleigh power method.

Course	Outcomes: At the end of the course, the students will be able to
CO1	Test the consistency of a system of linear equations and to solve by direct and iterative methods.
CO2	Applytheknowledgeofcalculustosolveproblemsrelatedtopolarcurvesanditsapplicationsin
	Determining the bentness of a curve.
CO3	Learn the notion of partial differentiation to calculate rate of change of multivariate functions and solve
	Problems related to composite functions and Jacobian.
CO4	Get acquainted fundamentals of Arithmetic and to apply modular arithmetic to computer algorithms
CO5	Solve first-order linear/nonlinear ordinary differential equations analytically using standard methods.
	Demonstrate various models through higher order differential equations and solve such linear ordinary
	differential equations

Text Bo	oks
1	B.S. Grewal:"Higher Engineering Mathematics", Khanna publishers,44 th Ed.2018
2	E.Kreyszig:"Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed.(Reprint), 2016
Referen	ice Text Books
1	V. Ramana:"Higher Engineering Mathematics", Mc Graw-Hill Education,11 th Edition.
2	Gupta C.B,Sing S.R and Mukesh Kumar:"Engineering Mathematic for Semester I and II", Mc Graw
	(India) Pvt.Ltd,2015

Web links and Video lectures(e-Resources)

1. https://nptel.ac.in/courses/122106025

- 2. <u>VTUEDUSATPROGRAMME-20</u>
- 3. <u>http://www.class-central.com/subject/math(MOOCs)</u>

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course** (IC) shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of **IC**:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- **3.** Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to **5 marks**
- **3.** Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= **25 marks**.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

		Theory		
IA Test	Exam conducted	Scaled down to	Average of best two	Total
	for		tests	
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2X10=20	10	10	
Two Quizzes	2X10=20	10	10	

	LA	AB	
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25
Internal Test + Viva voce	Exam conducted for 50 Marks	Scaled down to 20 marks	

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			3					2		2
CO2	3	3			3					2		2
CO3	3	3			3					2		2
CO4	3	3			3					2		2
CO5	3	3			3					2		2

MOOGAMBIGAI CHARITABLE EDUCATIONAL TRUST

Rajarajeswari College of Engineering (An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester I/II					
		Applied Physics for	CS		
		Category: ASC			
	Strea	m: CSE (Common to all CSE	allied branches)		
		(Integrated)			
Course Code	:	B24PHCS102/202	CIE	:	50 Marks
Teaching Hours L : T : P	:	2:2:2	SEE	:	50 Marks
Total Hours:50Total:100 Marks				100 Marks	
Credits 4 SEE Duration : 3 Hrs					3 Hrs

Course	Objectives
1	To study the principles of modern physics and quantum mechanics
2	To study the essentials and applications of lasers and optical fibers
3	To study the concepts of quantum computing
4	To study the electrical properties of materials and basics of digital displays
5	To study the properties and applications of Semiconductors

Module - 1 Modern Physics and Quantum Mechanics	No. of Hrs
Concepts of modern physics and quantum mechanics: Wave-particle dualism, de Broglie	
hypothesis (qualitative), phase and group velocities, relation between group velocity and phase	
velocity, relation between group velocity and particle velocity.	
Heisenberg's uncertainty principle, non-confinement of electrons in atomic nucleus, Setting up of	8
one dimensional time independent Schrodinger's wave equation from classical wave equation,	
properties and physical significance of wave function, energy eigen values of a particle in an	
infinite one dimensional potential well, Numerical problems on modern physics and quantum	
mechanics.	
Module – 2 Lasers and Optical Fibers	No. of Hrs
Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and	
stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at	
thermal equilibrium, requisites of a laser system, three and four level lasers, principle and	
operation of CO ₂ laser, applications of lasers.	8
Optical fibers, propagation mechanisms in optical fibers, angle of acceptance and numerical	
aperture (derivation), types of optical fibers, attenuation, attenuation mechanisms in optical fibers,	
application of optical fiber in point to point communication system. Numerical problems on lasers	
and optical fibers.	
Module – 3 Quantum Computing	No. of Hrs
Introduction to Quantum Computing, Moore's law & its end, Differences between Classical &	
Quantum computing. Concept of qubit and its properties. Representation of qubit by Bloch sphere.	
Single and Two qubits. Extension to N qubits.	
Matrix representation of 0 and 1 States, Identity Operator I, Applying I to 0) and 1) states, Pauli	
Matrices and its operations on 0) and 1) states, Explanation of i) Conjugate of a matrix and ii)	8
Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their	
multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule.	
Orthogonally, Orthonormality. Numerical Problems.	
Single Qubit Gates: Quantum Not Gate, Pauli – X, Y and Z Gates, Hadamard Gate.	
Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states),	
Toffoli gate.	
Module – 4 Electrical conductivity in metals	No. of Hrs
Classical free electron theory, assumptions, drift velocity, mean free path, mean collision time,	
relaxation time, mobility of electrons, expression for electrical conductivity (no derivation), effect	
of temperature and impurity on electrical resistivity of metals, failures of classical free-electron	8
theory.	
Quantum free electron theory, assumptions, density of states (no derivation), Fermi-energy, Fermi	
factor & its temperature dependence Fermi - Dirac Statistics expression for electrical	

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

conductivity (expression only), merits of quantum free electron theory, numerical problems.	
Module – 5 Physics of Semiconductors and introduction to digital display	No. of Hrs
Semiconductors and devices: Fermi level in intrinsic & extrinsic semiconductor (qualitative), expression for concentration of electrons in conduction band & holes concentration in valance band (expression only), relation between Fermi energy & energy gap intrinsic semiconductors(derivation), law of mass action, electrical conductivity of a semiconductor (derivation), Hall effect, expression for Hall coefficient (derivation) and its application, photo-diode and power responsivity, construction and working of semiconducting laser. Introduction to digital displays, CRT (Cathode Ray Tube) displays, LCD (Liquid Crystal Display), LED (Light Emitting Diode) displays, OLED (Organic Light Emitting Diode) displays, plasma displays, quantum dot displays, numerical problems on semiconductors.	8

Course Outcomes: At the end of the course, the students will be able to			
Describe the concepts of Modern Physics and Quantum Mechanics and their Applications			
Explain the principles of LASERS and Optical fibers and their relevant applications			
Describe the concepts of quantum computing			
Elucidate the concepts of electrical conductivity of conductors and semiconductors, and digital displays			
Practice working in groups to conduct experiments in Physics and perform precise and honest			
measurements			

Text Bo	oks
1	S P Basavaraj, Engineering Physics, , 2018 Edition, Subhash Stores.
2	Gupta and Gour, Engineering Physics, Dhanpat Rai Publications, 2016 (Reprint)
Referen	ice Text Books
1	Arthur Beiser, Concepts of Modern Physics, 6th edition, Tata McGraw Hill Edu Pvt Ltd-New Delhi
	2006
2	Halliday, D., Resnick, R. & Walker, J, Principles of Physics, Wiley, 2015
3	BB Laud, Lasers and Non-linear optics, 3rd edition, New Age International Publishers 2011
4	Parag K Lala, Quantum Computing – A Beginner's Introduction, , Indian Edition, Mc GrawHill, Reprint
	2020
5	S.O Pillai, Solid state physics, 10 th edition, 2022

Web links and Video lectures (e-Resources)

- 1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>
- 2. <u>https://www.youtube.com/watch?v=MT5X15ppn48</u>
- 3. <u>https://www.youtube.com/watch?v=N_kA8EpCUQo</u>
- 4. <u>https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s</u>
- 5. https://archive.nptel.ac.in/courses/115/103/115103108
- 6. <u>https://www.youtube.com/watch?v=tz_3M3v3kxk</u>

LIST OF EXPERIMENTS

Experiment Number	Name of the Experiment
1	Dielectric constant of a capacitor
2	Photo Diode
3	Fermi Energy
4	Diffraction Grating
5	Acceptance Angle and NA of an Optical Fiber

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

6	Black Box
7	Transistor Characteristics
8	LCR Series and Parallel Resonance Circuit
9	Determination of Magnetic Field Intensity
10	Plank's Constant
11	Newton's Rings
12	Single Cantilever
13	Young's modulus by uniform bending
14	Spring Constants
15	Study of motion using spread Sheets

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course (IC)** shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= **25 marks**.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Theory						
IA Test	Exam conducted	Scaled down to	Average of best two	Total		
	for		tests			
IA-1	50	30				
IA-2	50	30	30			
IA-3	50	30		50/2=25		
Two Assignments	2X10=20	10	10			
Two Quizzes	2X10=20	10	10			

LAB							
Continuous	Each experiments	Scaled down to 05					
performance and	evaluated for 10	marks	5+20=25				
record writing	marks						
Internal Test + Viva	Exam conducted for	Scaled down to 20					
voce	50 Marks	marks					

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students has to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	1	2	1	1	1	1	-	-	-	-
CO2	3	3	1	2	1	1	1	1	-	-	-	-
CO3	3	3	1	2	3	1	1	1	-	-	-	-
CO4	3	3	1	2	2	1	1	1	-	-	-	-
CO5	3	3	1	2	1	1	1	1	-	-	-	-

CO-PO Mapping

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Semester I/ II							
Principles of Programming using C							
		Category: ESC					
	Strea	m: CSE (Common to all CS	E allied branches)				
		(Integrated)					
Course Code	:	B24POPC103/203	CIE	:	50 Marks		
Teaching Hours L : T : P	:	2:0:2	SEE	:	50 Marks		
Total Hours:50Total:100 Marks							
Credits 3 SEE Duration : 3 Hrs							
		•					

C					
Course	Course Objectives				
1.	Learn the concepts of computer, functionalities of a computer and C programming principles				
2.	Use various constructs structuring and implementing the C program				
3.	Illustrate the user-defined function and data structures like arrays for the solutions to problems				
4.	Understand the concepts of strings and pointers to solve a realistic problem				
5.	Solve simple real-world problems using modular approach and file handling mechanisms				

Module - 1	No. of Hrs			
Basics of Programming: Introduction to computers, input and output devices, program design				
tools: the meaning of Algorithms, Flowcharts, Pseudocode, Memory concepts.				
C Fundamentals: Importance of 'C' Language, History, Structure of 'C' program, Sample 'C'	08			
Program, Files used in a C program, Compilers, Compiling and executing C programs, variables,				
constants, data types, Enumeration, Input/output statements in C.				
Module - 2	No. of Hrs			
Operators in C, Type conversion and typecasting.				
Decision control and looping statements: Introduction to decision control, Conditional				
branching statements, iterative statements, nested loops, break and continue statements, goto	08			
statement.	08			
Module - 3	No. of Hrs			
Functions: Introduction using functions, Function definition, function declaration, function call,				
return statement, passing parameters to functions, scope of variables, storage classes, recursive				
functions.				
Arrays: The meaning of an array, one dimensional and two dimensional arrays, declaration and	08			
initialization of arrays, reading, writing the elements of an array, storing values in arrays,				
Operations on arrays: Traversing, Searching and sorting, Passing arrays to functions, applications				
of arrays.				
Module – 4	No. of Hrs			
Strings: Declaration and Initialization, String Input / Output functions, String manipulation				
functions.				
	08			
Pointers: Introduction to pointers, accessing the address space of a variable, declaring and				
initialization of pointer variables, accessing a variable through its pointer, pointer and arrays,				
pointer to a function, calling a functions through function pointer.				
Module - 5	No. of Hrs			
Structure, Union and Enumerated Data Type: Defining a structure, Declaring and accessing				
structure variables, structure initialization, array of structures, Nested structure, structures and				
functions. Unions. Enumerated data type.	08			
File Handling: Defining and opening a file, input/output operations on files, error handling during I/O				

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

operations, random access files, command line arguments, C preprocessor.

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Learn the working principles of computer, various functions of peripheral devices and fundamental concept of C programming language.					
CO2	Understanding the various constructs structuring and implementing the C program.					
CO3	Understand the user defined data structures like arrays in implementing solutions to searching and sorting methods.					
CO4	Understand the use of strings, structures, union, pointers and I/O files to solve a realistic problem.					
CO5	Know the solution for real-world problems using modular approach and file handling mechanisms.					

Practical Component

Demonstration of Computer and Its Accessories

Laboratory Session-1: Write-up on Functional block diagram of Computer and explain its parts.

Laboratory Session-2: Write-up on Input and Output devices of computer.

Note: These TWO Laboratory sessions fill the gap between theory classes and practical sessions. Students have to wr up and execute the same, updated in Lab record and evaluated.

Sl. No.	Experiments for Conduction
1.	Simulation of a Simple Calculator.
2.	Compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.
3.	 Program to calculate the Gross Salary of an employee by considering the input as basic salary and include a 5% Dearness Allowance (DA) and a 10% House Rent (HR) allowance, where the Gross Salary is determined as the sum of the basic salary, DA, and HR. Also calculate the tax deducted for an annual income with the given conditions: a) If income is less than or equal to 5 lakhs, then no tax b) If income is in the range 5 lakhs to 10 lakhs, then tax is 10%
	c) If income is above 10 lakhs, then the tax is 30%
	Program to display the following by reading the number of rows as input
4	1 1 2 1
4.	1 2 3 2 1
	1 2 3 4 3 2 1
	n th row
5.	Program for Binary Search on Integers.
6.	Implement Matrix multiplication and validate the rules of multiplication.
7.	Program to Sort the given set of N numbers using Bubble sort technique.

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

8.	Using functions, perform the string operations such as compare, concatenate, and string length. Use the parameter passing techniques.
9.	Apply structures to read, write and compute average- marks of the students, list the students scoring above and below the average marks for a class of N students.
10.	Using pointers, compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.
11.	Program to copy a text file to another, read both the input file name and target file name.

Text B	ooks
1	Reema Thareja, "Computer fundamentals and programming in C", Oxford University, Second
1.	edition, 2017.
Referen	nce Text Books
1.	E. Bala Guruswamy, "Programming in ANSI C", 7th Edition, Tata McGraw-Hill.
2.	Brian W. Kernighan and Dennis M. Ritchie, "The 'C' Programming Language", Second
	edition, PrenticeHall of India.
3.	Yashwanth Kanethkar, "Let us C", 13th Edition, BPB Publications.
4.	Brian W. Kernighan, Dennis M. Ritchie, Programming Languages C with Practicals, Margham
	Publications; 1 edition (2012).

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more clarity in understanding the topics and verities of problem solving methods.
- 2. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.htm
- 3. https://tinyurl.com/4xmrexre

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course (IC)** shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to **25**.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to **5 marks**
- **3.** Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= **25 marks**.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

Theory						
IA Test	Exam conducted	Scaled down to	Average of best two	Total		
	for		tests			
IA-1	50	30				
IA-2	50	30	30			
IA-3	50	30		50/2=25		
Two Assignments	2X10=20	10	10			
Two Quizzes	2X10=20	10	10			

LAB						
Continuous	Each experiments	Scaled down to 05				
performance and	evaluated for 10	marks	5+20=25			
record writing	marks					
Internal Test + Viva	Exam conducted for	Scaled down to 20				
voce	50 Marks	marks				

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	1	-	-	-	-	-	2
CO2	2	2	2	1	1	-	-	-	-	-	-	2
CO3	2	2	2	1	2	-	-	-	-	-	-	2
CO4	3	3	3	2	3	-	-	-	-	-	-	2
CO5	3	2	-	-	2	-	-	-	-	-	-	2

Level 3- High, Level 2- Moderate, Level 1- Low

Semester I/II					
	In	troduction to Electrical E	Engineering		
		Category: ESC- I/	II		
	(C	Common to All Branches e	xcept EEE)		
		(Theory)			
Course Code	:	B24ESCK142/242	CIE	:	50 Marks
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks
Total Hours		40 hrs	Total	:	100 Marks
Credits		3	SEE Duration	:	3 Hrs

Cours	e Objectives
1	To explain the power generation concepts and laws used in the analysis of DC circuits.
2	To explain the behavior of circuit elements in single-phase and three phase circuits.
3	To describe the construction and operation DC machines and Transformers
4	To describe the application of renewable energy and introduction to EV
5	To describe domestic wiring and safety measures.

Module - 1	No. of Hrs
 Introduction: Conventional and non-conventional energy resources; Generalstructure of electrical power systems using single line diagram approach. Power Generation: Hydel, Nuclear, Solar & Wind power generation (BlockDiagram approach). DC Circuits: Ohm's Law and its limitations, KCL & KVL, Series, Parallel, Series-Parallel circuits. Simple Numerical. 	08
Module - 2	No. of Hrs
 Single Phase Circuits: Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Analysis of R-L, R-C, R-L-C Series circuits, Active power, Reactive power and Apparent power, Concept of power factor. Three Phase Circuits: Generation of Three phase AC quantity, Advantages and limitations; Star and Delta connection, Relationship between line and phase quantities 	08
Module - 3	No. of Hrs
 DC Machines: DC Generator: Principle of operation, Constructional details, Induced EMF expression, Types of generators, Relation between induced EMF and terminal voltage, simple numericals on EMF equation, DC Motor: Principle of operation, Back EMF and its significance, Types of motors, characteristics and speed control (armature & field) of DC motors (series & shunt only), Torque equation, Applications of DC motors Transformers: Necessity of transformer, Principle of operation, Types and construction of single phase transformers, EMF equation, Losses of transformer, Efficiency, Simple numerical on Losses and Efficiency 	08
Module - 4	No. of Hrs
Applications of Renewable energy: Photovoltaic Systems, Solar distillation; Solar Pond electric power plant, Off grid solar inverter, Urban waste to energy conversion, Hydrogen based transportation system Introduction to EV: History, General block diagram, Application and Benefits	08
Module - 5	No. of Hrs
Domestic Wiring: Requirements, Types of wiring: casing, capping. Two way and three way control of load.	08

(An Autonomous Institution, Affiliated to VTU, Belagavi & Approved by AICTE, New Delhi & Govt. of Karnataka)

Electrical Safety: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits, Electric Shock, Earthing and its types, Safety Precautions to avoid shock

Electricity bill: Power consumption of electrical energy, Two-part electricity tariff, *Case study on calculation of electricity bill for domestic consumers.*

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Understand the concepts of power generation and and solve DC circuit problems						
CO2	Analyze single-phase circuits, solve R-L, R-C, and R-L-C circuits, and comprehend						
	three-phase circuit principles.						
CO3	Understand DC machines, transformers and their characteristics						
CO4	Understand the application of renewable energy and basics of EV						
CO5	Understand domestic wiring and safety measures						

Text B	ooks
1	D C Kulshreshtha, Basic Electrical Engineering, Tata McGraw Hill, First Edition
	2019
Refere	nce Books
1	B.L. Theraja, A text book of Electrical Technology, S Chand and Company, reprint
	edition 2014.
2	G D Rai, Nonconventional Energy sources, , Khanna Publication, Fourth Edition, 1988
3	D. P. Kothari and I. J. Nagrath, Basic Electrical Engineering, , Tata McGraw Hill 4th
	edition, 2019.
4	V. K. Mehta, Rohit Mehta, Principles of Electrical Engineering & Electronics, S.
	Chand and Company Publications, 2nd edition, 2015.
5	Rajendra Prasad, Fundamentals of Electrical Engineering, PHI, 3rd edition, 2014.
6	Iqbal Husain, Electric and Hybrid Vehicles Design Fundamentals, CRC Press, second edition 2011

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CIE for the theory:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50)

(An Autonomous Institution, Affiliated to VTU, Belagavi & Approved by AICTE, New Delhi & Govt. of Karnataka)

		Theory		
IA Test	Exam conducted	Scaled down to	Average of best two	Total
	for		tests	
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		30+10+10=50
Two Assignments	2X10=20	10	10	
Two Quizzes	2X10=20	10	10	

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	2	2	-	-	1	1	-	-	-	-	1
CO2	3	3	3	2	-	1	-	-	-	-	-	1
CO3	3	2	2	1	-	1	1	-	-	-	-	1
CO4	3	1	1	1	2	2	2	-	-	-	-	1
CO5	3	1	1	-	1	2	1	1	-	-	1	1

CO-PO Mapping

Level 3- High, Level 2- Moderate, Level 1- Low

Semester I / II					
Introduction to IoT					
		Category: ETC-I/I	Ι		
		(Common to ALL bra	nches)		
		(Theory)			
Course Code	:	B24ETCK156/256	CIE	:	50 Marks
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	40	Total	:	100 Marks
Credits		3	SEE Duration	:	3 Hrs

Cours	Course Objectives						
1	Understand the fundamentals of the Internet of Things, its building blocks, and their						
1	characteristics						
2	Understand the recent application domains of IoT in everyday life						
3	Gain insights about the current trends of Associated IoT technologies and IoT Analytics						

Module - 1	No. of Hrs
Basics of Networking: Introduction, Network Types, Layered network Models	
Predecessors of IoT: Introduction, Wireless Sensor Networks, Machine-to- Machine	
Communications	
Emergence of IoT: Introduction, Evolution of IoT, Enabling IoT and the Complex	8
Interdependence of Technologies, IoT Networking Components	
Textbook 1: Chapter 1- 1.1 to 1.3 Chapter 3 – 3.1 - 3.3 Chapter 4 – 4.1 to 4.4	
Module - 2	No. of Hrs
IoT Sensing and Actuation: Introduction, Sensors, Sensor Characteristics, Sensorial	
Deviations, Sensing Types, Sensing Considerations, Actuators, Actuator Types,	
Actuator Characteristics.	8
Textbook 1: Chapter 5 – 5.1 to 5.9	
Module - 3	No. of Hrs
 IoT Processing Topologies and Types: Data Format, Importance of Processing in IoT, Processing Topologies, IoT Device Design and Selection Considerations, Processing Offloading. Textbook 1: Chapter 6 – 6.1 to 6.5 	8
Module - 4	No. of Hrs
 IoT Connectivity Technologies: Introduction, IEEE802.15.4, Zigbee, RFID, LoRa, Wi-Fi, Bluetooth ASSOCIATED IOT TECHNOLOGIES Cloud Computing: Introduction, Virtualization, Cloud Models, Service-Level Agreement in Cloud Computing, Cloud Implementation, Sensor-Cloud: Sensors- as-a-Service. Textbook 1: Chapter 7- 7.1 - 7.3, 7.7, 7.13, 7.15, 7.16 Chapter 10– 10.1 to 10.6 	8
Module - 5	No. of Hrs
IOT CASE STUDIES AND FUTURE TRENDS	
Agricultural IoT – Introduction and Case Studies	8
Vehicular IoT – Introduction	Ŭ
Healthcare IoT – Introduction Case Studies	
Textbook 1: Chapter 12- 12.1-12.2 Chapter 13– 13.1: Chapter 14- 14.1-14.2	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Describe the basics of Networking, Predecessors of IoT, and the emergence of IoT					
CO2	Classify various sensing devices and actuator types					
CO3	Demonstrate the processing Topologies in IoT and types					
CO4	Explain IoT Connectivity technologies and Associated IoT technologies					
CO5	Illustrate the architecture of IoT Applications					

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Textbo	oks
1	Sudip Misra, Anandarup Mukherjee, Arijit Roy, "Introduction to IoT", Cambridge
	University Press 2021.
Refere	nce Textbooks
1	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things
	and Industry 4.0. CRC Press.
2	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st
	Edition, VPT, 2014.
3	Francis da Costa, "Rethinking the Internet of Things: A Scalable Approach toConnecting
	Everything", 1st Edition, Apress Publications, 2013.

Web links and Video lectures (e-Resources) 1. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CIE for the theory:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

Theory										
IA Test	Exam conducted	Scaled down to	Average of best two	Total						
	for		tests							
IA-1	50	30								
IA-2	50	30	30							
IA-3	50	30		30+10+10=50						
Two Assignments	2X10=20	10	10							
Two Quizzes	2X10=20	10	10							

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	-	3	1	3	3	3	-	-	-	-	2
CO2	2	-	3	1	3	3	3	-	-	-	-	2
CO3	2	-	3	1	3	3	3	-	-	-	-	2
CO4	2	-	3	1	3	3	3	-	-	-	-	2
CO5	2	-	3	1	3	3	3	-	-	-	-	2

Level 3- High, Level 2- Moderate, Level 1- Low

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

UG (B.E) Syllabus 2024-25

I Semester – Physics Cycle

Artificial Intelligence & Machine Learning (AIML) CSE (IoT, Cyber Security including Blockchain Technology) (CSE[IC])

SEMESTER I										
Mathematics-I for CS										
Course Code : B24MACS101 CIE : 50 Marks										
Teaching Hours L: T :P	:	2:2:2	SEE	:	50 Marks					
Total Hours	:	50 Hours	Total	:	100 Marks					
Credits	:	4	SEE Duration	:	3Hrs					

	Course Objectives							
1	Develop the knowledge of Linear Algebra referring to matrices.							
2	Develop the knowledge of solving engineering problems of pedal equation and Taylors series							
3	Analyze engineering problems by applying Partial Differential Equations.							
4	Develop the knowledge on fundamentals of arithmetic							
5	Develop the knowledge of solving differential equations and their applications in engineering							

Module-1: Linear Algebra-I	10hrs.
Rank of a matrix by elementary row transformations. Consistency of linear system of equations. Solution of	
linear system of equations: Gauss elimination, Gauss Jordan, and Gauss-Seidel methods, Rayleigh's Power	
Method to find the dominant eigen value and eigen vector of a square matrix.	
Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix	
by Cayley- Hamilton theorem.	
Applications: Boolean matrix, Network Analysis, Markov Analysis, Critical point of a Network system,	
Optimum solution.	
Module-2: Polar curves	10hrs.
Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves.	
Pedal equation. Curvature and Radius of Curvature-Cartesian, Parametric, Polar and Pedal forms (Proof	
only for Cartesian and Polar Forms). Taylor's and Maclaurin's series expansion for one variable (Statement	
only)– problems.	
Self-study: Centre and circle of curvature, evolutes, and involutes.	
Applications: Computer graphics, Image processing.	
Module-3: Partial Derivatives	10hrs.
Evaluation of indeterminate forms. Function of two or more variables, Partial derivatives, Differentiation of	
composite functions. Jacobians (direct examples). Maxima and Minima of functions of two variables and	
problems.	
Self-study: Method of Lagrange's undetermined multipliers with single constraint. Euler's and Euler's	
extension theorem and problems.	
Applications: Series expansion in computer programming, Computing errors and approximations.	
Module-4: Modular Arithmetic	10hrs.
Introduction to Divisibility, GCD and Congruences, Linear Congruences, The Remainder theorem, Solving	
Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's Theorem, Wilson	
Theorem and Fermat's little theorem. Applications of Congruences- RSA algorithm.	
Self-study: Properties of Prime Numbers, Fundamental theorem of Arithmetic	
Applications: Cryptography, encoding and decoding, RSA applications in public key encryption.	
Module-5: Differential Equations	10hrs.
Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations. Integrating	
factors on $\frac{1}{N}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$ and $\frac{1}{M}\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)$, Orthogonal trajectories. Problems. Non-linear differential	
equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible	
to Clairaut's equations -Problems.	
Self-Study: Applications of ODEs, Solvable for x and y.	
Applications: Rate of Growth or Decay, Conduction of heat	

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering (An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

List of Laboratory experiments (2 hours/week per batch) 10lab sessions + 1repetition class + 1 Lab Assessment

1	2D plots for Cartesian and polar curves									
2	Finding angle between polar curves, curvature and radius of curvature of a given curve									
3	Finding partial derivatives and Jacobian									
4	Applications to Maxima and Minima of two variables									
5	Solution of first-order ordinary differential equation and plotting the solution curves									
6	Finding GCD using Euclid's Algorithm									
7	Solving linear congruence's $ax \equiv b(modm)$									
8	Numerical solution of system of linear equations, test for consistency and graphical representation									
9	Solution of system of linear equations using Gauss-Seidel iteration									
10	Compute Eigen values and Eigen vectors and find the largest and smallest eigen value by Rayleigh power method.									

Course	Outcomes: At the end of the course, the students will be able to
CO1	Test the consistency of a system of linear equations and to solve by direct and iterative methods.
CO2	Applytheknowledgeofcalculustosolveproblemsrelatedtopolarcurvesanditsapplicationsin
	Determining the bentness of a curve.
CO3	Learn the notion of partial differentiation to calculate rate of change of multivariate functions and solve
	Problems related to composite functions and Jacobian.
CO4	Get acquainted fundamentals of Arithmetic and to apply modular arithmetic to computer algorithms
CO5	Solve first-order linear/nonlinear ordinary differential equations analytically using standard methods.
	Demonstrate various models through higher order differential equations and solve such linear ordinary
	differential equations

Text Bo	oks						
1	B.S. Grewal:"Higher Engineering Mathematics", Khanna publishers,44 th Ed.2018						
2	E.Kreyszig:"Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed.(Reprint), 2016						
Referen	Reference Text Books						
1	V. Ramana:"Higher Engineering Mathematics", Mc Graw-Hill Education,11 th Edition.						
2	Gupta C.B,Sing S.R and Mukesh Kumar:"Engineering Mathematic for Semester I and II", Mc Graw						
	(India) Pvt.Ltd,2015						

Web links and Video lectures(e-Resources)

1. https://nptel.ac.in/courses/122106025

- 2. <u>VTUEDUSATPROGRAMME-20</u>
- 3. <u>http://www.class-central.com/subject/math(MOOCs)</u>

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course** (IC) shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- **3.** Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to **5 marks**
- **3.** Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= **25 marks**.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

Theory										
IA Test	Exam conducted	Scaled down to	Average of best two	Total						
	for		tests							
IA-1	50	30								
IA-2	50	30	30							
IA-3	50	30		50/2=25						
Two Assignments	2X10=20	10	10							
Two Quizzes	2X10=20	10	10							

LAB									
Continuous performance and	Each experiments evaluated for 10	Scaled down to 05 marks	5+20=25						
record writing	marks								
Internal Test + Viva	Exam conducted for	Scaled down to 20							
voce	50 Marks	marks							

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			3					2		2
CO2	3	3			3					2		2
CO3	3	3			3					2		2
CO4	3	3			3					2		2
CO5	3	3			3					2		2

MOOGAMBIGAI CHARITABLE EDUCATIONAL TRUST

Rajarajeswari College of Engineering (An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester I/II							
Applied Physics for CS							
		Category: ASC					
	Stream: CSE (Common to all CSE allied branches)						
	(Integrated)						
Course Code	:	B24PHCS102/202	CIE	:	50 Marks		
Teaching Hours L : T : P	:	2:2:2	SEE	:	50 Marks		
Total Hours	:	50	Total	:	100 Marks		
Credits		4	SEE Duration	:	3 Hrs		

Course	Objectives
1	To study the principles of modern physics and quantum mechanics
2	To study the essentials and applications of lasers and optical fibers
3	To study the concepts of quantum computing
4	To study the electrical properties of materials and basics of digital displays
5	To study the properties and applications of Semiconductors

Concepts of modern physics and quantum mechanics: Wave-particle dualism, de Broglie hypothesis (qualitative), phase and group velocities, relation between group velocity and phase velocity, relation between group velocity and particle velocity. Heisenberg's uncertainty principle, non-confinement of electrons in atomic nucleus, Setting up of one dimensional time independent Schrodinger's wave equation from classical wave equation, properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics.No. of HrsModule - 2 Lasers and Optical FibersNo. of HrsLasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO2 laser, applications of lasers.8
hypothesis (qualitative), phase and group velocities, relation between group velocity and phase velocity, relation between group velocity and particle velocity. Heisenberg's uncertainty principle, non-confinement of electrons in atomic nucleus, Setting up of one dimensional time independent Schrodinger's wave equation from classical wave equation, properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics.8Module - 2 Lasers and Optical FibersNo. of HrsLasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO2 laser, applications of lasers.808
velocity, relation between group velocity and particle velocity.8Heisenberg's uncertainty principle, non-confinement of electrons in atomic nucleus, Setting up of one dimensional time independent Schrodinger's wave equation from classical wave equation, properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics.8Module - 2 Lasers and Optical FibersNo. of HrsLasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO2 laser, applications of lasers.8
Heisenberg's uncertainty principle, non-confinement of electrons in atomic nucleus, Setting up of one dimensional time independent Schrodinger's wave equation from classical wave equation, properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics. 8 Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8 Ontical fibers 8
one dimensional time independent Schrodinger's wave equation from classical wave equation, properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics. Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8
properties and physical significance of wave function, energy eigen values of a particle in an infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics. Module – 2 Lasers and Optical Fibers Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8
infinite one dimensional potential well, Numerical problems on modern physics and quantum mechanics. Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8
mechanics. No. of Hrs Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8
Module – 2 Lasers and Optical Fibers No. of Hrs Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO ₂ laser, applications of lasers. 8 Optical fibers protection of acceptance and numerical 8
Lasers, interaction of radiation with matter, induced absorption, spontaneous emission and stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO_2 laser, applications of lasers. 8
stimulated emission, expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO_2 laser, applications of lasers. 8
thermal equilibrium, requisites of a laser system, three and four level lasers, principle and operation of CO_2 laser, applications of lasers. 8
operation of CO_2 laser, applications of lasers. 8
Ontiged fibers propagation machanisms in optiged fibers angle of accontence and numerical
Optical noers, propagation mechanisms in optical noers, angle of acceptance and numerical
aperture (derivation), types of optical fibers, attenuation, attenuation mechanisms in optical fibers,
application of optical fiber in point to point communication system. Numerical problems on lasers
and optical fibers.
Module – 3 Quantum Computing No. of Hrs
Introduction to Quantum Computing, Moore's law & its end, Differences between Classical &
Quantum computing. Concept of qubit and its properties. Representation of qubit by Bloch sphere.
Single and Two qubits. Extension to N qubits.
Matrix representation of 0 and 1 States, Identity Operator I, Applying I to 0 and 1 states, Pauli
Matrices and its operations on 0) and 1) states, Explanation of i) Conjugate of a matrix and ii) 8
Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their
multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule.
Orthogonally, Orthonormality. Numerical Problems.
Single Qubit Gates: Quantum Not Gate, Pauli – X, Y and Z Gates, Hadamard Gate.
Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states),
Toffoli gate.
Module – 4 Electrical conductivity in metals No. of Hrs
Classical free electron theory, assumptions, drift velocity, mean free path, mean collision time,
relaxation time, mobility of electrons, expression for electrical conductivity (no derivation), effect
of temperature and impurity on electrical resistivity of metals, failures of classical free-electron 8
theory.
Quantum free electron theory, assumptions, density of states (no derivation), Fermi-energy, Fermi

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

conductivity (expression only), merits of quantum free electron theory, numerical problems.			
Module – 5 Physics of Semiconductors and introduction to digital display			
Semiconductors and devices: Fermi level in intrinsic & extrinsic semiconductor (qualitative), expression for concentration of electrons in conduction band & holes concentration in valance band (expression only), relation between Fermi energy & energy gap intrinsic semiconductors(derivation), law of mass action, electrical conductivity of a semiconductor (derivation), Hall effect, expression for Hall coefficient (derivation) and its application, photo-diode and power responsivity, construction and working of semiconducting laser. Introduction to digital displays, CRT (Cathode Ray Tube) displays, LCD (Liquid Crystal Display), LED (Light Emitting Diode) displays, OLED (Organic Light Emitting Diode) displays, plasma displays, quantum dot displays, numerical problems on semiconductors.	8		

Course Outcomes: At the end of the course, the students will be able to					
Describe the concepts of Modern Physics and Quantum Mechanics and their Applications					
Explain the principles of LASERS and Optical fibers and their relevant applications					
Describe the concepts of quantum computing					
Elucidate the concepts of electrical conductivity of conductors and semiconductors, and digital displays					
Practice working in groups to conduct experiments in Physics and perform precise and honest					
measurements					

Text Bo	ooks
1	S P Basavaraj, Engineering Physics, , 2018 Edition, Subhash Stores.
2	Gupta and Gour, Engineering Physics, Dhanpat Rai Publications, 2016 (Reprint)
Referen	ice Text Books
1	Arthur Beiser, Concepts of Modern Physics, 6th edition, Tata McGraw Hill Edu Pvt Ltd-New Delhi
	2006
2	Halliday, D., Resnick, R. & Walker, J, Principles of Physics, Wiley, 2015
3	BB Laud, Lasers and Non-linear optics, 3rd edition, New Age International Publishers 2011
4	Parag K Lala, Quantum Computing – A Beginner's Introduction, , Indian Edition, Mc GrawHill, Reprint
	2020
5	S.O Pillai, Solid state physics, 10 th edition, 2022

Web links and Video lectures (e-Resources)

- 1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>
- 2. <u>https://www.youtube.com/watch?v=MT5X15ppn48</u>
- 3. <u>https://www.youtube.com/watch?v=N_kA8EpCUQo</u>
- 4. https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s
- 5. https://archive.nptel.ac.in/courses/115/103/115103108
- 6. <u>https://www.youtube.com/watch?v=tz_3M3v3kxk</u>

LIST OF EXPERIMENTS

Experiment Number	Name of the Experiment			
1	Dielectric constant of a capacitor			
2	Photo Diode			
3	Fermi Energy			
4	Diffraction Grating			
5	Acceptance Angle and NA of an Optical Fiber			

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

6	Black Box
7	Transistor Characteristics
8	LCR Series and Parallel Resonance Circuit
9	Determination of Magnetic Field Intensity
10	Plank's Constant
11	Newton's Rings
12	Single Cantilever
13	Young's modulus by uniform bending
14	Spring Constants
15	Study of motion using spread Sheets

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course (IC)** shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= 25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Theory								
IA Test	Exam conducted	Scaled down to	Average of best two	Total				
	for		tests					
IA-1	50	30						
IA-2	50	30	30					
IA-3	50	30		50/2=25				
Two Assignments	2X10=20	10	10					
Two Quizzes	2X10=20	10	10					

LAB								
Continuous	Each experiments	Scaled down to 05						
performance and	evaluated for 10	marks	5+20=25					
record writing	marks							
Internal Test + Viva	Exam conducted for	Scaled down to 20						
voce	50 Marks	marks						

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students has to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	1	2	1	1	1	1	-	-	-	-
CO2	3	3	1	2	1	1	1	1	-	-	-	-
CO3	3	3	1	2	3	1	1	1	-	-	-	-
CO4	3	3	1	2	2	1	1	1	-	-	-	-
CO5	3	3	1	2	1	1	1	1	-	-	-	-

CO-PO Mapping

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Semester I/ II							
Principles of Programming using C							
		Category: ESC					
	Strea	m: CSE (Common to all CSI	E allied branches)				
		(Integrated)					
Course Code	:	B24POPC103/203	CIE	:	50 Marks		
Teaching Hours L : T : P	:	2:0:2	SEE	:	50 Marks		
Total Hours	:	50	Total	:	100 Marks		
Credits		3	SEE Duration	:	3 Hrs		

Course	e Objectives
1.	Learn the concepts of computer, functionalities of a computer and C programming principles
2.	Use various constructs structuring and implementing the C program
3.	Illustrate the user-defined function and data structures like arrays for the solutions to problems
4.	Understand the concepts of strings and pointers to solve a realistic problem
5.	Solve simple real-world problems using modular approach and file handling mechanisms

Module - 1	No. of Hrs
Basics of Programming: Introduction to computers, input and output devices, program design	
tools: the meaning of Algorithms, Flowcharts, Pseudocode, Memory concepts.	
C Fundamentals: Importance of 'C' Language, History, Structure of 'C' program, Sample 'C'	08
Program, Files used in a C program, Compilers, Compiling and executing C programs, variables,	
constants, data types, Enumeration, Input/output statements in C.	
Module - 2	No. of Hrs
Operators in C, Type conversion and typecasting.	
Decision control and looping statements: Introduction to decision control, Conditional	
branching statements, iterative statements, nested loops, break and continue statements, goto	08
statement.	08
Module - 3	No. of Hrs
Functions: Introduction using functions, Function definition, function declaration, function call,	
return statement, passing parameters to functions, scope of variables, storage classes, recursive	
functions.	
Arrays: The meaning of an array, one dimensional and two dimensional arrays, declaration and	08
initialization of arrays, reading, writing the elements of an array, storing values in arrays,	
Operations on arrays: Traversing, Searching and sorting, Passing arrays to functions, applications	
of arrays.	
Module – 4	No. of Hrs
Strings: Declaration and Initialization, String Input / Output functions, String manipulation	
functions.	
	08
Pointers: Introduction to pointers, accessing the address space of a variable, declaring and	
initialization of pointer variables, accessing a variable through its pointer, pointer and arrays,	
pointer to a function, calling a functions through function pointer.	
Module - 5	No. of Hrs
Structure, Union and Enumerated Data Type: Defining a structure, Declaring and accessing	
structure variables, structure initialization, array of structures, Nested structure, structures and	
functions. Unions. Enumerated data type.	08
File Handling: Defining and opening a file, input/output operations on files, error handling during I/O	00

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

operations, random access files, command line arguments, C preprocessor.

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Learn the working principles of computer, various functions of peripheral devices and fundamental concept of C programming language.					
CO2	Understanding the various constructs structuring and implementing the C program.					
CO3	Understand the user defined data structures like arrays in implementing solutions to searching and sorting methods.					
CO4	Understand the use of strings, structures, union, pointers and I/O files to solve a realistic problem.					
CO5	Know the solution for real-world problems using modular approach and file handling mechanisms.					

Practical Component

Demonstration of Computer and Its Accessories

Laboratory Session-1: Write-up on Functional block diagram of Computer and explain its parts.

Laboratory Session-2: Write-up on Input and Output devices of computer.

Note: These TWO Laboratory sessions fill the gap between theory classes and practical sessions. Students have to wr up and execute the same, updated in Lab record and evaluated.

Sl. No.	Experiments for Conduction
1.	Simulation of a Simple Calculator.
2.	Compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.
3.	 Program to calculate the Gross Salary of an employee by considering the input as basic salary and include a 5% Dearness Allowance (DA) and a 10% House Rent (HR) allowance, where the Gross Salary is determined as the sum of the basic salary, DA, and HR. Also calculate the tax deducted for an annual income with the given conditions: a) If income is less than or equal to 5 lakhs, then no tax b) If income is in the range 5 lakhs to 10 lakhs, then tax is 10%
	c) If income is above 10 lakhs, then the tax is 30%
	Program to display the following by reading the number of rows as input
4.	$ \begin{array}{r} 1\\ 121\\ 12321\\ 1234321\end{array} $
	n th row
5.	Program for Binary Search on Integers.
6.	Implement Matrix multiplication and validate the rules of multiplication.
7.	Program to Sort the given set of N numbers using Bubble sort technique.

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

8.	Using functions, perform the string operations such as compare, concatenate, and string length. Use the parameter passing techniques.
9.	Apply structures to read, write and compute average- marks of the students, list the students scoring above and below the average marks for a class of N students.
10.	Using pointers, compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.
11.	Program to copy a text file to another, read both the input file name and target file name.

Text B	ooks
1	Reema Thareja, "Computer fundamentals and programming in C", Oxford University, Second
1.	edition, 2017.
Referen	nce Text Books
1.	E. Bala Guruswamy, "Programming in ANSI C", 7th Edition, Tata McGraw-Hill.
	Brian W. Kernighan and Dennis M. Ritchie, "The 'C' Programming Language", Second
2.	edition, PrenticeHall of India.
3.	Yashwanth Kanethkar, "Let us C", 13th Edition, BPB Publications.
4.	Brian W. Kernighan, Dennis M. Ritchie, Programming Languages C with Practicals, Margham
	Publications; 1 edition (2012).

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more clarity in understanding the topics and verities of problem solving methods.
- 2. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.htm
- 3. https://tinyurl.com/4xmrexre

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the **Integrated Course (IC)** shall be 25 marks and for the laboratory component 25 marks

CIE for the theory component of IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for (20+20) marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks) scaled down to **25**.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

CIE for the Practical component of IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to **5 marks**
- **3.** Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20= **25 marks**.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.
- 7. The maximum of 05 questions is to be set from the practical component and the total marks of all questions should not be more than 25 marks.

Theory								
IA Test	IA Test Exam conducted Scaled down to Average of best two							
	for		tests					
IA-1	50	30						
IA-2	50	30	30					
IA-3	50	30		50/2=25				
Two Assignments	2X10=20	10	10					
Two Quizzes	2X10=20	10	10					

LAB								
Continuous	Each experiments	Scaled down to 05						
performance and	evaluated for 10	marks	5+20=25					
record writing	marks							
Internal Test + Viva	Exam conducted for	Scaled down to 20						
voce	50 Marks	marks						

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub questions), should have a mix of topics under that module.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	1	-	-	-	-	-	2
CO2	2	2	2	1	1	-	-	-	-	-	-	2
CO3	2	2	2	1	2	-	-	-	-	-	-	2
CO4	3	3	3	2	3	-	-	-	-	-	-	2
CO5	3	2	-	-	2	-	-	-	-	-	-	2

Level 3- High, Level 2- Moderate, Level 1- Low

Semester I/II							
		Introduction to Electro	onics				
		Category: ESC- I/II	[
	(Cc	ommon to All Branches e	except ECE)				
		(Theory)	_				
Course Code	••	B24ESCK143/243	CIE	:	50 Marks		
Teaching Hours/Week (L:T:P: S)	••	3:0:0	SEE	:	50 Marks		
Fotal Hours:40Total:100 Marks							
Credits : 3 SEE Duration : 3 Hrs							

Course	e Objectives
1	To Explain the operation of Semiconductor diode, Zener diode and their applications.
2	To Explain the Transistor operation and Different configurations, working and construction of
	FET and MOSFET.
3	To Explain the operation of linear Op-amps and its applications
4	To Explain the Basic Logic gates, circuits and their optimization.
5	To Explain the Principles of Communication system

Module - 1	No. of Hrs
Diode Applications - Load line analysis, series- diode configuration. Sinusoidal inputs - half wave rectification, Full wave Rectification, Zener diodes, voltage multiplier Circuits . T1: 2.2,2.3,2.6,2.7,2.11, 2.12	8
Module - 2	No. of Hrs
Bipolar junction transistor - Transistor operation, common base configuration, common emitter configuration, common collector configuration. Junction field effect transistor - construction and characteristics of JFET, Transfer Characteristics. MOSFET- Depletion type MOSFET, Enhancement type MOSFET T1: 3-3, 304, 305, 306, 6-2, 6-3, 6-7, 6-8	8
Module - 3	No. of Hrs
Operational amplifier –Operational amplifier basics, practical Op-Amp circuits, Op-Amp specification –DC offset parameter, frequency parameter, Differential and common mode operation. Practical Op-Amp circuits– Inverting amplifier, non-inverting amplifier, Unity follower, Summingamplifier, Integrator, Differentiator. T1:10.4, 10.5, 10.6, 10.7, 10.9	8
Module- 4	No. of Hrs
Boolean Algebra and Logic Circuits: Binary numbers, Number Base Conversion, octal &Hexa Decimal Numbers, Complements, Basic definitions, Axiomatic Definition of Boolean Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Other Logic Operations, Digital Logic Gates (Text 2: 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7) Combinational logic: Introduction, Design procedure, Adders- Half adder, Full adder (Text 2:4.1, 4.2, 4.3)	8
Module- 5	No. of Hrs
Elements of a Communication system, Need for Modulation, Amplitude Modulation (Am) Techniques, Frequency Modulation, Phase modulation, Comparison of FM & PM, Comparison of FM and AM. T3: 1.2, 1.3, 3.2.1, 4.1.1, 4.1.2, 4.1.3, 4.2.6, 6.2.1, 6.2.2	8

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Develop the basic knowledge on construction and characteristics of semiconductor devices.						
CO2	Summarize the basic concept of small scale circuits using BJT, JFET, MOSFET scale circuits						
CO3	Apply the knowledge on various applications of operational amplifiers						
CO4	Understand the concepts of Boolean algebra and Logic circuits						
CO5	Illustrate the outline of Communication system.						

Text B	ooks
1	Robert L Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, 11th Edition,
	Pearson Education, 2013, ISBN: 978-93-325-4260-0.
2	M. Morris Mano, Digital Logic and Computer Design, PHI Learning, 2008 ISBN-978-81-203
	0417-84.
3	George Kenndy, Electronics communication systems, 5 th Edition, TataMcgrahill.
Refere	nce Books
1	David A Bell, Electronic Devices and Circuits,5th Edition, Oxford, 2016 2.
2	Ramakanth A Gayakwad, Op-amps and Linear Integrated Circuits, Pearson Education, 4th
	Edition

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/122106025
- 2. https://nptel.ac.in/courses/108105132
- 3. https://nptel.ac.in/courses/117104072

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CIE for the theory:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Theory										
IA Test	Exam conducted	Scaled down to	Average of best two	Total						
	for		tests							
IA-1	50	30								
IA-2	50	30	30							
IA-3	50	30		30+10+10=50						
Two Assignments	2X10=20	10	10							
Two Quizzes	2X10=20	10	10							

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	2	-	-	2	-	-	1	-	-	1
CO2	3	2	3	2	-	1	-	-	1	-	-	1
CO3	3	2	3	1	-	-	-	-	1	-	-	1
CO4	2	1	1	1	2	1	-	-	1	-	-	1
CO5	2	1	1	-	1	1	-	-	1	-	-	1

CO-PO Mapping

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Semester I / II								
Introduction to IoT								
Category: ETC-I/II								
		(Common to ALL bra	nches)					
(Theory)								
Course Code	:	B24ETCK156/256	CIE	:	50 Marks			
Teaching Hours L: T: P	SEE	:	50 Marks					
Total Hours: 40Total: 100 Marks								
Credits		3	SEE Duration	:	3 Hrs			

Cours	Course Objectives							
1	Understand the fundamentals of the Internet of Things, its building blocks, and their							
1	characteristics							
2	Understand the recent application domains of IoT in everyday life							
3	Gain insights about the current trends of Associated IoT technologies and IoT Analytics							

Module - 1	No. of Hrs
Basics of Networking: Introduction, Network Types, Layered network Models	
Predecessors of IoT: Introduction, Wireless Sensor Networks, Machine-to- Machine	
Communications	
Emergence of IoT: Introduction, Evolution of IoT, Enabling IoT and the Complex	8
Interdependence of Technologies, IoT Networking Components	
Textbook 1: Chapter 1- 1.1 to 1.3 Chapter 3 – 3.1 - 3.3 Chapter 4 – 4.1 to 4.4	
Module - 2	No. of Hrs
IoT Sensing and Actuation: Introduction, Sensors, Sensor Characteristics, Sensorial	
Deviations, Sensing Types, Sensing Considerations, Actuators, Actuator Types,	
Actuator Characteristics.	8
Textbook 1: Chapter 5 – 5.1 to 5.9	
Module - 3	No. of Hrs
 IoT Processing Topologies and Types: Data Format, Importance of Processing in IoT, Processing Topologies, IoT Device Design and Selection Considerations, Processing Offloading. Textbook 1: Chapter 6 – 6.1 to 6.5 	8
Module - 4	No. of Hrs
IoT Connectivity Technologies: Introduction, IEEE802.15.4, Zigbee, RFID, LoRa, Wi-Fi, Bluetooth ASSOCIATED IOT TECHNOLOGIES Cloud Computing: Introduction, Virtualization, Cloud Models, Service-Level	
Agreement in Cloud Computing, Cloud Implementation, Sensor-Cloud: Sensors- as- a-Service. Textbook 1: Chapter 7- 7.1 - 7.3, 7.7, 7.13, 7.15, 7.16 Chapter 10– 10.1 to	8
10.6	
Module - 5	No. of Hrs
IOT CASE STUDIES AND FUTURE TRENDS	
Agricultural IoT – Introduction and Case Studies	8
Vehicular IoT – Introduction	
Healthcare IoT – Introduction, Case Studies	
Textbook 1: Chapter 12- 12.1-12.2 Chapter 13– 13.1; Chapter 14- 14.1-14.2	

Course	e Outcomes: At the end of the course, the students will be able to
CO1	Describe the basics of Networking, Predecessors of IoT, and the emergence of IoT
CO2	Classify various sensing devices and actuator types
CO3	Demonstrate the processing Topologies in IoT and types
CO4	Explain IoT Connectivity technologies and Associated IoT technologies
CO5	Illustrate the architecture of IoT Applications

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Textbo	oks
1	Sudip Misra, Anandarup Mukherjee, Arijit Roy, "Introduction to IoT", Cambridge
	University Press 2021.
Refere	nce Textbooks
1	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things
	and Industry 4.0. CRC Press.
2	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st
	Edition, VPT, 2014.
3	Francis da Costa, "Rethinking the Internet of Things: A Scalable Approach toConnecting
	Everything", 1st Edition, Apress Publications, 2013.

Web links and Video lectures (e-Resources)1. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/

CIE Evaluation

Assessment Details both (CIE and SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CIE for the theory:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

Theory										
IA Test	Exam conducted	Scaled down to	Average of best two	Total						
	for		tests							
IA-1	50	30								
IA-2	50	30	30							
IA-3	50	30		30+10+10=50						
Two Assignments	2X10=20	10	10							
Two Quizzes	2X10=20	10	10							

Semester End Examination (SEE)

Theory SEE will be conducted by the institution as per the scheduled timetable, with common question papers for the subject.

- 1. The question paper shall be set for 100 marks. The medium of the question paper shall be in English. The duration of SEE is 3 hours.
- 2. The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module.
- 3. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 4. There will be two questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	-	3	1	3	3	3	-	-	-	-	2
CO2	2	-	3	1	3	3	3	-	-	-	-	2
CO3	2	-	3	1	3	3	3	-	-	-	-	2
CO4	2	-	3	1	3	3	3	-	-	-	-	2
CO5	2	-	3	1	3	3	3	-	-	-	-	2

Level 3- High, Level 2- Moderate, Level 1- Low

Common Courses I Semester – Physics Cycle

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Somestor I										
	Schiestel-1									
Communicative English										
Category: AEC										
		Common to All Bran	nches							
		(Theory)								
Course Code	:	B24ENGK106	CIE	:	50 Marks					
Teaching Hours L : T : P: 1:0:0SEE: 50 Marks										
Total Hours:15Total:100 Marks										
Credits		1	SEE Duration	:	1 Hr					

Course Objectives: The course Communicative English (BENGK106) will enable the students

1.	To know about Fundamentals of Communicative English and Communication Skills in general.
2.	To train to identify the nuances of phonetics, intonation and enhance pronunciation skills for better Communication skills.
3.	To impart basic English grammar and essentials of important language skills.
4.	To enhance with English vocabulary and language proficiency for better communication skills.
5.	To learn about Techniques of Information Transfer through presentation.

Teaching-Learning Process :

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective:

Teachers shall adopt suitable pedagogy for effective teaching - learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools and software's to meet the present requirements of the Global employment market.

(i) Direct instructional method (Low/Old Technology), (ii) Flipped classrooms (High/advanced Technological tools), (iii) Blended learning (Combination of both), (iv) Enquiry and evaluation based learning,(v) Personalized learning, (vi) Problems based learning through discussion, (vii) Following the method of expeditionary learning Tools and techniques, (viii) Use of audio visual methods through language Labs in teaching of of LSRW skills.

Apart from conventional lecture methods, various types of innovative teaching techniques through videos, animation films may be adapted so that the delivered lesson can progress the students In theoretical applied and practical skills in teaching of communicativeskills in general.

Module - 1	No. of Hrs		
Introduction to Communicative English : Communicative English, Fundamentals of			
Communicative English, Process of Communication, Barriers to Effective Communicative English,	03		
Different styles and levels in Communicative English. Interpersonal and Intrapersonal			
Communication Skills			
Module - 2	No. of Hrs		
Introduction to Phonetics : Phonetic Transcription, English Pronunciation, Pronunciation			
Guidelines to consonants and vowels, Sounds Mispronounced, Silent and Non silent Letters,	03		
Syllables and Structure. Word Accent, Stress Shift and Intonation, Spelling Rules and Words often			
Misspelt. Common Errors in Pronunciation			
Module - 3	No. of Hrs		
Basic English Communicative Grammar and Vocabulary PART - I : Grammar: Basic English			
Grammar and Parts of Speech, Articles and Preposition. Question Tags, One Word Substitutes,			
Strong and Weak forms of words, Introduction to Vocabulary, All Types of Vocabulary -			
Exercises on it.			

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Module - 4			
Basic English Communicative Grammar and Vocabulary PART - II: Words formation -			
Prefixes and Suffixes, Contractions and Abbreviations. Word Pairs (Minimal Pairs) – Exercises,	03		
Tense and Types of tenses, The Sequence of Tenses (Rules in use of Tenses) and Exercises on it.			
Module - 5			
Communication Skills for Employment :Information Transfer: Oral Presentation and its			
Practice. Difference between Extempore/Public Speaking, Communication Guidelines. Mother			
Tongue Influence (MTI), Various Techniques for Neutralization of Mother Tongue Influence.			
Reading and Listening Comprehensions – Exercises.			

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Understand and apply the Fundamentals of Communication Skills in their communication skills				
CO2	Identify the nuances of phonetics, intonation and enhance pronunciation skills				
CO3	To impart basic English grammar and essentials of language skills as per present requirement				
CO4	Understand and use all types of English vocabulary and language proficiency				
CO5	Adopt the Techniques of Information Transfer through presentation				

Text Bo	ooks
1.	Sanjay Kumar & Pushpa Lata, Communication Skills, Oxford University Press India Pvt Ltd - 2019
2.	A Textbook of English Language Communication Skills, (ISBN-978-81-955465-2-7), Published by
	InfiniteLearning Solutions, Bengaluru - 2022
Referen	nce Text Books
1.	Gajendra Singh Chauhan and Et al, Technical Communication, (ISBN-978-93-5350-050-4), Cengage
	learningIndia Pvt Limited [Latest Revised Edition] - 2019
2.	N.P.Sudharshana and C.Savitha ,English for Engineers, Cambridge University Press – 2018
3.	English Language Communication Skills – Lab Manual cum Workbook, Cengage learning India Pvt
	Limited[Latest Revised Edition] - (ISBN-978-93-86668-45-5), 2019
4.	D Praveen Sam, KN Shoba, A Course in Technical English, Cambridge University Press – 2020
5.	Michael Swan, Practical English Usage, Oxford University Press – 2016

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE): Three Unit Tests each of 50 Marks (duration 01 hour). The pattern of the question paper is MCQ (multiple choice questions).

1st, 2nd, and 3rd tests shall be conducted after completion of the syllabus of 30-35%, 70-75%, and 100% of the course/s respectively. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks. The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Conducting Seminar for 10 Marks. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs.

Total Marks scored (Average of best two tests + Two Assignments + Seminar) out of 80 shall be scaled down to 50 marks.

Semester End Examinations (SEE): SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student must secure a minimum of 35% of the maximum marks for SEE.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Contents related activities (Activity-based discussions)
- For active participation of students instruct the students to prepare Flowcharts and Handouts
- Organizing Group wise discussions Connecting to placement activities
- Quizzes and Discussions, Seminars and assignments

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester-I/II					
		Constitution of Ind	ia		
		Category: HSMC			
		Common to All Branc	ches		
		(Theory)			
Course Code	:	B24HCIK107/207	CIE	:	50 Marks
Teaching Hours L : T : P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	15	Total	:	100 Marks
Credits		1	SEE Duration	:	1 Hr

Course Objectives: The course INDIAN CONSTITUTION will enable the students,

1.	To know about the basic structure of Indian Constitution.
2.	To know the Fundamental Rights (FR's), DPSP's and Fundamental Duties (FD's) of our constitution.
3.	To know about our Union Government, political structure & codes, procedures.
4.	To know the State Executive & Elections system of India.
5.	To learn the Amendments and Emergency Provisions, other important provisions given by the constitution.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective: Teachers shall adopt suitable pedagogy for effective teaching - learning process. The pedagogy shall involve the combination of different methodologies which suit modern technological tools.

(i) Direct instructional method (Low/Old Technology), (ii) Flipped classrooms (High/advanced Technological tools),(iii) Blended learning (Combination of both), (iv) Enquiry and evaluation based learning, (v) Personalized learning, (vi) Problems based learning through discussion.

(ii) Apart from conventional lecture methods, various types of innovative teaching techniques through videos, animation films may be adapted so that the delivered lesson can progress the students In theoretical applied and practical skills.

Module - 1	No. of Hrs
Indian Constitution: Necessity of the Constitution, Societies before and after the Constitution	
adoption. Introduction to the Indian constitution, Making of the Constitution, Role of the	03
Constituent Assembly.	
Module - 2	No. of Hrs
Salient features of India Constitution. Preamble of Indian Constitution & Key concepts of the	
Preamble. Fundamental Rights (FR's) and its Restriction and limitations in different Complex	03
Situations. building.	
Module - 3	No. of Hrs
Directive Principles of State Policy (DPSP's) and its present relevance in Indian society. Fundamental Duties and its Scope and significance in Nation, Union Executive : Parliamentary System, Union Executive – President, Prime Minister, Union Cabinet.	03
Module - 4	No. of Hrs
Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies.	
Judicial System of India, Supreme Court of India and other Courts, Judicial Reviews and Judicial	03
Activism.	
Module - 5	No. of Hrs
State Executive and Governer, CM, State Cabinet, Legislature - VS & VP, Election Commission, Elections & Electoral Process. Amendment to Constitution, and Important Constitutional Amendments till today. Emergency Provisions.	03

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Analyse the basic structure of Indian Constitution.					
CO2	Remember their Fundamental Rights, DPSP's and Fundamental Duties (FD's) of our constitution.					
CO3	Know about our Union Government, political structure & codes, procedures.					
CO4	Understand our State Executive & Elections system of India.					
CO5	Remember the Amendments and Emergency Provisions, other important provisions given by the constitution.					

Text Bo	oks			
1.	"Constitution of India" (for Competitive Exams) - Published by Naidhruva Edutech			
	Learning Solutions, Bengaluru. – 2022.			
2	"Introduction to the Constitution of India", (Students Edition.) by Durga Das Basu (DD			
2.	Basu): Prentice –Hall, 2008.			
Referen	Reference Text Books			
1.	"Constitution of India, Professional Ethics and Human Rights" by Shubham Singles, Charles E.			
	Haries, and et al: published by Cengage Learning India, Latest Edition – 2019.			
2.	"The Constitution of India" by Merunandan K B: published by Merugu Publication, Second			
	Edition, Bengaluru.			
3.	"Samvidhana Odu" - for Students & Youths by Justice HN Nagamohan Dhas, Sahayana, kerekon.			
4.	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice – Hall, 2004.			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE): Three Unit Tests each of 50 Marks (duration 01 hour). The pattern of the question paper is MCQ (multiple choice questions).

1st, 2nd, and 3rd tests shall be conducted after completion of the syllabus of 30-35%, 70-75%, and 100% of the course/s respectively. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks. The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Conducting Seminar for 10 Marks. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs.

Total Marks scored (Average of best two tests + Two Assignments + Seminar) out of 80 shall be scaled down to 50 marks.

Semester End Examinations (SEE): SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student must secure a minimum of 35% of the maximum marks for SEE.

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Contents related activities (Activity-based discussions)
- For active participation of students instruct the students to prepare Flowcharts and Handouts
- Organising Group wise discussions Connecting to placement activities
- Quizzes and Discussions
- Seminars and assignments

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Semester I/II					
		Innovation and Design T	hinking		
		Category: AEC/SD	C		
		Common to All Branc	ches		
		(Theory)			
Course Code	:	B24IDTK108/208	CIE	:	50 Marks
Teaching Hours L : T : P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	15	Total	:	100 Marks
Credits		1	SEE Duration	:	1 Hr

Course Objectives 1. To explain the concept of design thinking for product and service development 2. To explain the fundamental concept of innovation and design thinking 3. To discuss the methods of implementing design thinking in the real world. Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- **1.** Lecturer method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain concepts
- 3. Encourage collaborative (Group Learning) Learning in the class
- **4.** Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- **5.** Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develops thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recallit.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.

Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.

Module - 1	No. of Hrs
PROCESS OF DESIGN	
Understanding Design thinking	
Shared model in team-based design - Theory and practice in Design thinking - Explore	03
presentation signers across globe – MVP or Prototyping	
Module - 2	No. of Hrs
Tools for Design Thinking Real-Time design interaction capture and analysis – Enabling efficient collaboration in digital space– Empathy for design – Collaboration in distributed Design	03
Module - 3	No. of Hrs
Design Thinking in IT Design Thinking to Business Process modelling – Agile in Virtual collaboration environment – Scenariobased Prototyping	03
Module - 4	No. of Hrs
DT For strategic innovations Growth – Story telling representation – Strategic Foresight - Change – Sense Making - Maintenance Relevance – Value redefinition - Extreme Competition – experience design - Standardization – Humanization - Creative Culture – Rapid prototyping, Strategy and	03

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering (An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Organization – Business Model design.	
Module - 5	No. of Hrs
Design thinking workshop	
Design Thinking Work shop Empathize, Design, Ideate, Prototype and Test	03

Course Outcomes: At the end of the course, the students will be able to		
CO1	Appreciate various design process procedure	
CO2	Generate and develop design ideas through differenttechnique	
CO3	Identify the significance of reverse Engineering to Understand products	
CO4	Draw technical drawing for design ideas	

Text Books		
1.	John.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengage	
	learning (International edition) Second Edition, 2013.	
2.	Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage",	
	Harvard Business Press, 2009.	
3	Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand – Improve–	
5.	Apply, Springer, 2011	
	Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You at Businessor	
4.	Design School", John Wiley & Sons 2013.	
Reference Text Books		
1.	Yousef Haik and Tamer M.Shahin, "Engineering Design Process", CengageLearning, Second	
	Edition, 2011.	
	Book - Solving Problems with Design Thinking - Ten Stories of What Works (Columbia Business	
2.	School Publishing) Hardcover – 20 Sep 2013 by Jeanne Liedtka (Author), Andrew King (Author),	
*** * **	Kevin Bennett (Author).	
Web links and Video Lectures (e-Kesources):		
1.	www.tutor2u.net/business/presentations/./productlifecycle/default.html	
2.	https://docs.oracle.com/cd/E11108_02/otn/pdf/. /E11087_01.pdf	
3.	www.bizfilings.com > Home > Marketing > Product Developmen	
4.	https://www.mindtools.com/brainstm.html	
5.	https://www.quicksprout.com/. /how-to-reverse-engineer-your-competit	
6.	www.vertabelo.com/blog/documentation/reverse-engineering	
	https://support.microsoft.com/en-us/kb/273814	
7.	https://support.google.com/docs/answer/179740?hl=en	
8.	https://www.youtube.com/watch?v=2mjSDIBaUlM	
	thevirtualinstructor.com/foreshortening.html	
	https://dschool.stanford.edu//designresources//ModeGuideBOOTCAMP2010L.pdf	
	https://dschool.stanford.edu/use-our-methods/ 6. https://www.interaction-	
	design.org/literature/article/5-stages-in-the-design-thinking-process	
9.	http://www.creativityatwork.com/design-thinking-strategy-for-innovation/498.	
	https://www.nngroup.com/articles/design-thinking/9.	
	https://designthinkingforeducators.com/design-thinking/ 10. www.designthinkingformobility.org/wp-	
	content//10/NapkinPitch_Worksheet.pdf	

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE): Three Unit Tests each of 50 Marks (duration 01 hour). The pattern of the question paper is MCQ (multiple choice questions).

1st, 2nd, and 3rd tests shall be conducted after completion of the syllabus of 30-35%, 70-75%, and 100% of the course/s respectively. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks. The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time.

Conducting Seminar for 10 Marks. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs.

Total Marks scored (Average of best two tests + Two Assignments + Seminar) out of 80 shall be scaled down to 50 marks.

Semester End Examinations (SEE): SEE paper shall be set for 50 questions, each of the 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student must secure a minimum of 35% of the maximum marks for SEE.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning http://dschool.stanford.edu/dgift/