

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

M.Tech – Computer Science and Engineering Scheme 2024-25 I Semester

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

CSE
ch in
M.Te

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Scheme of Teaching and Examinations-2024 (Effective from the Academic Year 2024)

Sem: |

	,		_			-								
	tal Marks	ът	100		8		100	100	100				909	
tion	SE Marks	is	20	20	2		20	95	9	9	3		300	
Examina	IE Marks	С	20	9	R		50	20	20	9	2		300	
	uration in Hours	a	n		ŋ		£	e	e				8	
	Credits	e		4	,		n	e	4	-	8	2	8	
urs/Week	AQ2 \T	<i>s</i> 0	•	2	•		0	0	•	0	vtu ac in)	(111-20-11-2	2	
aching Ho	Practical	<u>م</u> د	•	•	•		0	0	2	2	ses fonline		4	
Ţ	Theory		ŋ	3			r,	3	3	0	Online cour		15	-
	8S9/OT	CSE		CSE		130	CSE	CSE	CSE	CSE	CSE		TOTAL	
	Course Title	Artificial Intelligence		Data Science and	Management	Data Structures & Algorithms	for Problem Solving	Advanced Software Engineering	Internet of Things	Algorithms & AI Lab	Research Methodology and	IPR (Online)		
	l Course Code	P24MTC101		P24MTC102		P24MTC103		P24MTC104	P24MTC105	P24MTC106	P24MTC107			
	Course and	PCC		PCC		PCC		PCC	IPCC	PCCL	NCMC			
	ON.											-		100

Dean-Academics 200

NCMC- None Credit Mandatory Course. L-Lecture, P-Practical. T/SDA-Tutorial / Skill Development Activities(Hours are for Interaction between faculty and students) MRM119- Research Methodology and IPR (Online) for the students who have not studied this course in the Undergraduate level. This course is not counted for vertical progression. Students have to quality for the award of the master's

Note: BSC-Basic Science Courses. PCC: Professional core. IPCC-Integrated Professional Core Courses. PCC(PB): Professional Core Courses (Project Based). PCCL-Professional Core Course lab

Dept. of Computer Science and Engg. Rajarajeswari Colleçe of Engineering Bengalaru - 560074 BOEOMethopersondies Name & Signature D. Out.

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

M.Tech – Computer Science and Engineering

Syllabus 2024-25

I Semester

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Semester I

Artificial Intelligence

Category: PCC

Stream: Computer Science & Engineering (M.Tech)

		(Theory)			
Course Code	•••	P24MTC101	CIE	•••	50 Marks
Teaching Hours L : P : SDA	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45 Hours	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

Cours	e Objectives
1	Define the foundational concepts of artificial intelligence and key problem-solving techniques
2	Explain the knowledge representation and reasoning techniques to solve complex problems in AI systems.
3	Use machine learning algorithms to evaluate their performance in real-world applications
4	Build the applications of natural language processing and robotics to enhance human-computer
	interaction.
5	Explore the ethical considerations and societal implications of AI technologies.

Module 1	No. of Hrs.
Module 1:Introduction to Artificial Intelligence and Problem Solving, Definition and scope of AI,	
History and evolution of AI, Types of AI: Narrow AI vs. General AI, Problem formulation and	0
problem-solving techniques, Search algorithms: Uninformed and informed search strategies,	9
Heuristic search and constraint satisfaction problems.	
Module 2	No. of Hrs.
Module 2: Knowledge Representation and Reasoning, Types of knowledge representation,	
Propositional logic and first-order logic ,Semantic networks and frames, Ontologies and their	0
applications, Deductive and inductive reasoning, Rule-based systems and non-monotonic reasoning,	9
Probabilistic reasoning and Bayesian networks.	
Module 3	No. of Hrs.
Module 3: Machine Learning, Introduction to machine learning, Supervised, unsupervised, and	
reinforcement learning, Common algorithms: Decision trees, SVM, neural networks Evaluation	9
metrics for machine learning models, Practical applications of machine learning in AI systems.	
Module 4	No. of Hrs.
Module 4: Natural Language Processing and Robotics, Basics of natural language processing	
(NLP), Text processing and language models, Sentiment analysis and language generation, Robotics	9
fundamentals and sensor technologies, Robot kinematics, control, and applications of AI in robotics.	
Module 5	No. of Hrs.
Module 5: Ethical and Societal Implications of AI, Ethical considerations in AI development ,AI	
and job displacement, Privacy concerns and data security, Bias and fairness in AI algorithms,	Q
Accountability and transparency in AI systems, The role of government and regulation in AI, Public	7
perception and trust in AI technologies, Future of AI and its impact on society	

Course	Outcomes: At the end of the course, the students will be able to	Blooms Level
CO1	Explain the foundational concepts of artificial intelligence, including its history, t	L2
	problem-solving techniques	
CO2	Apply knowledge representation and reasoning techniques to solve complex problems	L3
	in AI systems.	
CO3	Implement machine learning algorithms and evaluate their performance in real-world	L2
	applications	
CO4	Explore the principles and applications of natural language processing and robotics to	L4
	enhance human-computer interaction.	

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Text Bo	10KS
1	Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig, 4th Edition (2021)
2	"Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville third Edition.
Referen	ice Text Books
1	"Pattern Recognition and Machine Learning" by Christopher M. Bishop Edition: fourth Edition (2020)
	"Artificial Intelligence: Foundations of Computational Agents" by David L. Poole and Alan K.
	Mackworth Edition: third Edition (2021).

Web links and Video Lectures (e-Resources):

https://cs221.stanford.edu

https://www.kaggle.com/learn/machine-learning https://www.youtube.com/playlist?list=PLkDaE6sXhPqQ5s2cW2g1iGgC4eD9W6xZ2 https://www.youtube.com/playlist?list=PLD6B6F0A3B1D4D3D8A7E3C5E8A7B2E0C

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	Х			Х								
CO2			Х		Х							
CO3		Х										
CO4	Х											

3 credit Courses: (L:P:SDA 3:0:0)

Component	Marks Allocation	
	CIE Theory Component (50 Marks)	
	CIE - Theory Component (50 Marks)	
Internal Assessment	Covers 30% of the syllabus (50 marks, 1.5-hour	50
Test 1	duration)	50
Internal Assessment	Covers 70% of the syllabus (50 marks, 1.5-hour	50
Test 2	duration)	50
Internal Assessment	Covers 100% of the syllabus (50 marks, 1.5-hour	50
Test 3	duration)	50
a. Total Internal		
Assessment (Scaled	Best of 2 and Average of 2 Test	30
Down)		
b. Seminar Presentation	Seminar presentation 1 & 2 - Average of 2 Presentation (Each 10 marks)	10
c. Assignment	Assignments 1,2 – Average of 2 assignments (Each 10 marks)	10
Total a+b+c	Sum of Tests + Assignment+ Seminar	50

Minimum passing marks	50% (25/50) of the maximum marks of CI	E
	SEE - Theory Component (50 Marks)	
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50 : Minimum marks : 20/50)	100
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 10 of the CIE (Continuous Internal Evaluation) and SEI Examination) taken together.	0) in the sum total E (Semester End

Semester I					
	[Data Science and Man	agement		
		Category: PCC			
Str	ean	n: Computer Science and Engi	neering (M.Tech)		
		(Theory)			
Course Code	:	P24MTC102	CIE	:	50 Marks
Teaching Hours L : P :T: SDA	:	3:0:2:0	SEE	:	50 Marks
Total Hours	:	45	Total	:	100 Marks
Credits	:	4	SEE Duration	:	3 Hrs

Cours	e Objectives
1	Explore the foundational concepts of data science, history, significance, and process
2	Apply statistical methods and data analysis techniques to interpret and develop insights from complex datasets.
3	Implement various machine learning algorithms and assess their performance using appropriate evaluation metrics in real-world scenarios.
4	Utilize data visualization tools and techniques to effectively communicate findings and insights to diverse audiences

Module - 1	No. of Hrs
Module 1:	
Introduction: Big Data and Data Science Hype Getting Past the Hype Datafication. The Current	
Landscape, Data Science Jobs, A Data Science Profile, Statistical Inference, Exploratory Data	
Analysis, and the Data Science Process, Statistical Thinking in the Age of Big Data, Statistical	9
Inference, Populations and Samples, Populations and Samples of Big Data, Big Data Can Mean	
Big Assumptions. Modeling, Exploratory Data Analysis, Philosophy of Exploratory Data	
Analysis, Exercise: EDA, The Data Science Process, A Data Scientist's Role in This Process.	
Module - 2	No. of Hrs
Module 2:	
Algorithms, Machine Learning Algorithms, Three Basic Algorithms, Linear Regression, k-Nearest	
Neighbors (k-NN),k-means, Naive Bayes, Bayes Law, A Spam Filter for Individual Words, A	
Spam Filter That Combines Words: Naive Bayes Exercise Basic Machine Learning Algorithms,	9
Spam Filters, Naive Bayes, and Wrangling, Logistic Regression Thought Experiments Classifiers,	
Logistic Regression Case Study, Estimating α and β , Newton's Method, Stochastic Gradient	
Descent, Implementation, Evaluation, Sample R Code	
Module - 3	No. of Hrs
Module 3:	
Time Stamps and Financial Modeling, Kyle Teague and GetGlue, Timestamps, Exploratory Data	9
Analysis (EDA), Metrics and New Variables or Features, Financial Modeling In-Sample, Out-of-	,
Sample, and Causality, Preparing Financial Data, Log Returns	
Module - 4	No. of Hrs
Module 4:	
Extracting Meaning from Data, Background: Data Science Competitions, Background	
Crowdsourcing, The Kaggle Model, A Single Contestant, Their Customers, Data Visualization and	9
Fraud Detection, Data Visualization History, A Sample of Data Visualization Projects, Mark's	,
Data Visualization, Data Science and Risk About Square, The Risk Challenge, The Trouble with	
Performance Estimation, Model Building Tips.	
Module - 5	No. of Hrs
Module 5:	
Data Engineering: MapReduce, Pregel, and Hadoop, MapReduce, Word Frequency Problem.	
Enter MapReduce. Other Examples of MapReduce, Pregel, Thought Experiment, On Being a Data	9
Scientist, Data Abundanceversus Data Scarcity, Designing Models, Economic Interlude: Hadoop.	
A Brief Introduction in Hadoop, Cloudera, Next Generation Data Scientists, Hubris, and Ethics.	

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Course Outcomes: At the end of the course, the students will be able to				
		Level		
CO1	Explore the foundational concepts of data science, history, significance, and process	L3		
CO2	Apply statistical methods and data analysis techniques to interpret and develop insights from	L3		
	complex datasets.			
CO3	Implement various machine learning algorithms and assess their performance using	L2		
	appropriate			
	evaluation metrics in real-world scenarios.			
CO4	Utilize data visualization tools and techniques to effectively communicate findings and	L4		
	insights to			
	diverse audiences			

Text Bo	Text Books							
1	Doing Data Science. Straight talk from the Frontline", Rachel Schutt& Cathy O'Neil 2014, Orielly							
	publication							
2	Data Science from Scratch: First Principles with Python' by Joel Cirus, 2nd Edition (2019)							

Reference Books						
1	"The Elements of Statistical Learning" by Trevor Hastie, Robert Toshigami, and Jerome Friedman, 2nd Edition (2009)					

Web links and Video Lectures (e-Resources):									
	•	https://www.coursera.org/specializations/jhu-data-science							
	•	https://www.kaggle.com/learn/data-science							
	٠	https://www.edx.org/professional-certificate/harvards-data-science							
	•	https://www.youtube.com/playlist?list=PLAcUxeGkcC9g1s4L6G8p8Fq5XK6Pq7b1k							

4 credit Courses: (L:P:T:SDA 3:0:2:0)

Component	Marks Allocation	
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1.5-hour duration)	50
a. Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Test	30

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

b. Seminar Presentation	Seminar presentation 1 & 2 - Average of 2 Presentation (Each 10 marks)	10	
c. Assignment	Assignments 1,2 – Average of 2 assignments (Each 10 marks)	10	
Total a+b+c	Sum of Tests + Assignment+ Seminar	50	
Minimum passing 50% (25/50) of the maximum marks of CIE marks			
	SEE - Theory Component (50 Marks)		
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50 : Minimum marks : 20/50)	100	
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 10 of the CIE (Continuous Internal Evaluation) and SE Examination) taken together.	0) in the sum total E (Semester End	

Program outcome of this course:

Sl.No	Description	POs
1	Demonstrate the ability to independently conduct research and development work	PO1
	to address practical engineering problems.	
2	Develop and deliver comprehensive technical presentations that effectively convey	PO2
	complex information to diverse audiences	
3	Exhibit mastery in the specialized study area, surpassing the requirements of a	PO3
	relevant bachelor's program	
4	Analyze engineering problems critically and apply appropriate techniques, skills,	PO4
	and modern tools to develop innovative solutions.	

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	Х			Х								
CO2			Х									
CO3		Х										
CO4												

Semester I								
Data St	Data Structures & Algorithms for Problem Solving							
		Category: PCC						
Str	ear	n: Computer Science and Eng	gineering (M.Tech)					
		(Theory)						
Course Code	•••	P24MTC103	CIE	:	50 Marks			
Teaching Hours L:P: SDA : 3:0:0 SEE			SEE	:	50 Marks			
Total Hours: 45Total: 100 Marks								
Credits	Credits 3 SEE Duration : 3 Hrs.							

Cours	se Objectives
1	To reduce development time and the resources required to maintain existing applications.
2	To increase code reuse and provide a competitive advantage through effective use of data structures and
	algorithms.

Module - 1	No. of Hrs.			
Search Trees: Two Models of Search Trees. General Properties and Transformations. Height of a				
Search Tree. Basic Find, Insert, and Delete. Returning from Leaf to Root. Dealing with Non	9			
unique Keys. Queries for the Keys in an Interval. Building Optimal Search Trees. Converting				
Trees into Lists. Removing a Tree. Balanced Search Trees: Height-Balanced Trees. Weight-				
Balanced Trees. (a, b)- And B-Trees. Red-Black Trees and Trees of Almost Optimal Height. Top-				
Down Rebalancing for Red-Black Trees.				
Module - 2	No. of Hrs.			
Tree Structures for Sets of Intervals. Interval Trees. Segment Trees. Trees for the Union of				
Intervals. Trees for Sums of Weighted Interval. Trees for Interval-Restricted Maximum Sum	9			
Queries. Orthogonal Range Trees. Higher-Dimensional Segment Trees. Other Systems of Building				
Blocks. Range-Counting and the Semigroup Model. Kd-Trees and Related Structures.				
Module - 3	No. of Hrs.			
Heaps: Balanced Search Trees as Heaps. Array-Based Heaps. Heap-Ordered Trees and Half				
Ordered Trees. Leftist Heaps. Skew Heaps. Binomial Heaps. Changing Keys in Heaps. Fibonacci				
Heaps. Heaps of Optimal Complexity. Double-Ended Heap Structures and Multidimensional				
Heaps. Heap-Related Structures with Constant-Time Updates				
Module - 4				
Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's				
Algorithm for sparse graphs; Flow networks and Ford-Fulkerson method; Maximum bipartite				
matching. Polynomials and the FFT: Representation of polynomials; The DFT and FFT; Efficient				
implementation of FFT				
Module - 5	No. of Hrs.			
String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching				
with finite automata; Knuth-Morris-Pratt algorithm; Boyer – Moore algorithms	9			

Course	Blooms Level	
CO1	Analyze and apply fundamental data structures and algorithms to solve complex	L4
	computational problems effectively	
CO2	Evaluate and implement various searching, sorting to optimize algorithm	L5
	performance.	
CO3	Design and analyze advanced tree and graph algorithms, including balanced search	L5
	trees and graph traversal methods, to address real-world applications	

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Text E	looks
1	Advanced Data Structures, Peter Brass, Cambridge University Press, 2008.
2	Kenneth A. Berman. Algorithms. Cengage Learning. 2002.
3	T. H Cormen, C E Leiserson, R L Rivest and C Stein. Introduction to Algorithms. PHI, 3rd Edition, 2010
Referen	ice Text Books
1	Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, 4 th Edition, 2014, Pearson
2	Data structures with Java, Ford and Topp, Pearson Education.
3	Ellis Horowitz, SartajSahni, S.Rajasekharan. Fundamentals of Computer Algorithms. Universities press.
	2nd Edition, 2007
4	Data structures and Algorithms in Java, M.T.Goodrich, R.Tomassia, 3rd edition, Wiley India Edition.

Web links and Video lectures (e-Resources)

https://www.coursera.org/learn/advanced-data-structures https://nptel.ac.in/courses/106106133

https://pages.cs.wisc.edu/~shuchi/courses/787-F07/about.html

https://www.youtube.com/watch?v=0JUN9aDxVmI&list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7akUWSf

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
60												
CO1	Х			Х								
CO2			Х		Х							
CO3		Х										
CO4					Х							

3 credit Courses: (L:T:SDA 3:0:0)

Component	Evaluation Criteria	Marks Allocation
		imocuvion
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1.5-hour duration)	50
a. Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Test	30
b. Seminar Presentation	Seminar presentation 1 & 2 - Average of 2 Presentation (Each 10 marks)	10
c. Assignment	Assignments 1,2 – Average of 2 assignments (Each 10 marks)	10
Total a+b+c	Sum of Tests + Assignment+ Seminar	50

Minimum passing marks	50% (25/50) of the maximum marks of CIE		
	SEE - Theory Component (50 Marks)		
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50 : Minimum marks : 20/50)	100	
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 10 of the CIE (Continuous Internal Evaluation) and SEI Examination) taken together.	0) in the sum total E (Semester End	

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Semester	r I

Advanced	Software	Engineering

Category: PCC

Stream: Computer Science and Engineering (M.Tech)

(Theory)

(Theory)							
Course Code	••	P24MTC104	CIE	:	50 Marks		
Teaching Hours L:P:SDA	•••	3:0:0	SEE	:	50 Marks		
Total Hours	••	45	Total	:	100 Marks		
Credits		3	SEE Duration	:	3 Hrs.		

Cour	Course Objectives				
1	Reduce the development time, and resources required to maintain existing applications				
2	Increase code reuse, and provide a competitive advantage to organizations that uses it				

Module - 1	No. of Hrs
INTRODUCTION : What is software engineering? Software Engineering Concepts, Development	
Activities, Managing Software Development, Modeling with UML, Project Organization and	9
Communication	
Module - 2	No. of Hrs
REQUIREMENT ELICITATION AND ANALYSIS: Requirements Elicitation: Requirements	
Elicitation Concepts, Requirements Elicitation Activities, Managing Requirements Elicitation,	9
Analysis: Analysis Concepts, Analysis Activities, Managing Analysis.	
Module - 3	No. of Hrs
SYSTEM DESIGN: System design-Decomposing the system: Overview of System Design,	
System Design Concepts, System Design Activities: Objects to Subsystems, System Design -	9
Addressing design goals: Activities: An overview of system design actives, UML deployment	
diagrams, Addressing Design Goals, Managing System Design.	
Module - 4	No. of Hrs
OBJECT DESIGN, IMPLEMENTATION AND TESTING : Object design-Reusing pattern	
solutions: An Overview of Object Design, Reuse Concepts: Design Patterns, Reuse Activities,	9
Managing Reuse, Object design-Specifying interface: An overview of interface specification,	
Interfaces Specification Concepts, Interfaces Specification Activities, Managing Object Design,	
Mapping model to code: Mapping Models to Code Overview, Mapping Concepts, Mapping	
Activities, Managing Implementation, Testing: An overview of testing, Testing concepts,	
Managing testing.	
Module - 5	No. of Hrs
SOFTWARE MAINTENANCE AND SOFTWARE CONFIGURATION MANAGEMENT:	
Software maintenance: What is Software Maintenance?, Factors that Mandate Change, Lehman's	9
Laws of system evolution, Types of software maintenance, Software maintenance process and	
actives, Reverse Engineering, Software Re-engineering, Patterns for Software Maintenance, Tool	
support for Software Maintenance. Software Configuration Management: The baseline of	
Software Life Cycle, What is Software Configuration Management, Why Software Configuration	
Management, Software Configuration Management Functions, Software Configuration	
Management Tools.	

Cours	e Outcomes: At the end of the course, the students will be able to	Blooms Level
CO1	Apply Object Oriented Software Engineering approach in every aspect of	L3
	software project	
CO2	Adapt appropriate object oriented design aspects in the development process	L4
CO3	Adapt the concepts and tools related to software configuration management	L4

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Text E	Books
1	Object-Oriented Software Engineering, Bernd Bruegge, Alan H Dutoit, Pearson Education, 3 rd edition,
	2014.
2	Object oriented software engineering, David C. Kung, Tata McGraw Hill 2015.
Referen	nce Text Books
1	Object oriented software engineering, Stephan R. Schach, Tata McGraw Hill 2008.
2	Applying UML and Patterns, Craig Larman, Pearson Education 3rd ed, 2005

Web links and Video lectures (e-Resources)

1. https://medium.com/javarevisited/my-favorite-courses-to-learn-object-oriented-programming-and- designin-2019-197bab351733

2. https://www.youtube.com/watch?v=BqVqjJq7_vI

3 credit Courses: (L:T:SDA 3:0:0)

Component	Evaluation Criteria	Marks Allocation						
	CIE - Theory Component (50 Marks)							
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1.5-hour duration)	50						
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1.5-hour duration)	50						
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1.5-hour duration)	50						
a. Total Internal Assessment (Scaled Down)	30							
b. Seminar Presentation	10							
c. Assignment	c. Assignment Assignments 1,2 – Average of 2 assignments (Each 10 marks)							
Total a+b+c	Sum of Tests + Assignment+ Seminar	50						
Minimum passing marks	Minimum passing 50% (25/50) of the maximum marks of CIE marks							
SEE - Theory Component (50 Marks)								
Minimum passing marks	100							
Passing Criteria for CIE +SEE (Theory) The student secures not less than 50% (50 marks out of 100) in the sum of the CIE (Continuous Internal Evaluation) and SEE (Semester Examination) taken together.								

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
60												
CO1	Х					Х						
CO2		Х	Х									
CO3			Х		Х							
CO4		Х	Х									

Semester I							
		Internet of Thin	gs				
		Category: IPCC					
Stream	m:	Computer Science & Eng	ineering (M.Tech)				
		(Theory+Practical	1)				
Course Code	•••	P24MTC105	CIE	:	50 Marks		
Teaching Hours L:P:SDA:3:2:0SEE:50 Marks					50 Marks		
Total Hours:40+10Total:100 Marks							
Credits		4	SEE Duration	:	3 Hrs		

Course Objectives						
1	Explore the knowledge on combination of functionalities and services of networking					
2	Explain the definition and significance of the Internet of Things.					
3	Discuss the architecture, operation and business benefits of an IoT solution.					

Module - 1	No. of Hrs.
What is The Internet of Things? Overview and Motivations, Examples of Applications, IPV6 Role, Areas of Development and Standardization, Scope of the Present Investigation. Internet of Things Definitions and frameworks-IoT Definitions, IoT Frameworks, Basic Nodal Capabilities. Internet of Things Application Examples-Overview, Smart Metering/Advanced Metering Infrastructure-Health/Body Area Networks, City Automation, Automotive Applications, Home Automation, Smart Cards, Tracking, OverThe-Air-Passive Surveillance/Ring of Steel, Control Application Examples, Myriad Other Applications.	8
Module - 2	No of Hrs.
Fundamental IoT Mechanism and Key Technologies-Identification of IoT Object and Services, Structural Aspects of the IoT, Key IoT Technologies. Evolving IoT StandardsOverview and Approaches, IETF IPV6 Routing Protocol for RPL Roll, Constrained Application Protocol, Representational State Transfer, ETSI M2M, Third Generation Partnership Project Service Requirements for Machine-Type Communications, CENELEC, IETF IPv6 Over Low power WPAN, Zigbee IP(ZIP),IPSO	8
Module - 3	No of Hrs.
Layer ¹ / ₂ Connectivity: Wireless Technologies for the IoT-WPAN Technologies for IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M, Layer 3 Connectivity :IPv6 Technologies for the IoT: Overview and Motivations. Address Capabilities, IPv6 Protocol Overview, IPv6 Tunneling, IPsec in IPv6,Header Compression Schemes, Quality of Service in IPv6, Migration Strategies to IPv6	8
Module - 4	No. of Hrs.
Case Studies illustrating IoT Design-Introduction, Home Automation, Cities, Environment, Agriculture, Productivity Applications.	8
Module - 5	No. of Hrs.
Data Analytics for IoT – Introduction, Apache Hadoop, Using HadoopMapReduce for Batch Data Analysis, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Realtime Data Analysis, Structural Health Monitoring Case Study.	8

Course Outcomes : At the end of the course, the students will be able to					
		Level			
CO1	Choose appropriate schemes for the applications of IOT in real time scenarios	L2			
CO2	Manage the Internet resources through different protocols used in each layer	L1			
CO3	Compare various protocols and algorithms in different layers that facilitate effective	L3			
communication mechanisms					
CO4	Identify how IoT differs from traditional data collection systems	L2			

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Text Bo	poks						
1	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications						
	Daniel Minoli Wiley 2013						
2	Internet of Things: A Hands-on Approach ArshdeepBahga, Vijay Madisetti Universities Press 2015						
Referen	Reference Text Books						
1	The Internet of Things Michael Miller Pearson 2015 First Edition						
2	Designing Connected Products Claire Rowland, Elizabeth Goodman et.al O'Reilly First Edition, 2015						

Web links and Video lectures (e-Resources)

https://www.tutorialspoint.com/internet_of_things/index.htm#:~:text=IoT%20(Internet%20of%20Things) %20is,to%20any%20industry%20or%20system.

https://www.javatpoint.com/iot-internet-of-things

https://www.digimat.in/nptel/courses/video/106105166/L01.html(Video Lectures)

Sl.NO	Experiments
1	Transmit a string using UART
2	Point-to-Point communication of two Motes over the radio frequency
3	Multi-point to single point communication of Motes over the radio frequency AN (Sub netting).
4	I2C protocol study
5	Reading Temperature and Relative Humidity value from the sensor
6	Study of Connectivity and Configuration of Raspberry-Pi/Be agle Board circuit with Basic peripherals, LEDs, Understanding GPIO and its use in program.
7	Study of different operating systems for RaspberryPi/Be agle board.Understanding the Process of osinstallation on Raspberry–Pi/Be agle board.
8	Familiarization with the concept of IOT, Arduino/Raspberry Pi and perform necessary Software installation.

4 Credit courses (L:P:SDA 3:2:0):

Component	Evaluation Criteria	Marks Allocation
CIE - T	Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1.5-hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1.5-hour duration)	50

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

a. Total Internal Assessment (Scaled Down)	a. Total Internal Assessment (Scaled Down) Best of 2 and Average of 2 Test				
b. Seminar Presentation	Seminar presentation 1 & 2 - Average of 2 Presentation (Each 10 marks)	10			
c. Assignment	Assignments 1,2 – Average of 2 assignments (Each 10 marks)	10			
Total a+b+c	Sum of Tests + Assignment+ Seminar (Scaled Down to 25)	50			
Minimum passing marks	rks of CIE				
IPCC- CIE	2 - Practical Component (25 Marks)				
Average of 10 Experiments - Conduction (10)	on (10)+ Record (10)+ VIVA	30			
Conducted after all lab sessions		20			
Sum of Lab conduction & Practical Inte	ernal Test	50			
Minimum 50% in 0	CIE - Practical (13/25) - Scaled Down to 25	5			
SEE - '	Theory Component (50 Marks)				
Minimum passing marks	100				
Passing Criteria for CIE +SEE The student secures not less than 50% (50 marks out in the sum total of the CIE (Continuous Internal Eva and SEE (Semester End Examination) taken together.					

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1			Х	Х								
CO2												
CO3				Х								
CO4	Х											

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Semester I								
		Algorithms & AI Lab						
		Category: PCCL						
	Stream: Com	puter Science & Enginee	ering (M.Tech)					
		(Practical)		-				
Course	Code	P24MTC106	CIE Marks	50				
Teaching	g Hours/Week(L:T:P:SDA)	0:0:2:0	SEE Marks	50				
Credits 01 Exam Hours 03								
Course	objectives: This course will enable	e students to:						
• Imp	element and evaluate Algorithm ar	nd AI in Python programming	language.					
Descript	tions (if any):							
Installati journal.	on procedure of the required softw	vare must be demonstrated, ca	urried out in groups. and d	ocumented in the				
Sl.NO	Programs List:							
1	Implement a simple linear regre dataset.	ssion algorithm to predict a co	ontinuous target variable b	based on a given				
2	Develop a program to implement dataset and visualize the decision	It a Support Vector Machine f	for binary classification. U	Jse a sample				
3	Develop a simple case-based rea method to find the most similar	asoning system that stores inst cases and make predictions be	tances of past cases. Imple ased on them.	ement a retrieval				
4	Write a program to demonstrate classification.	the ID3 decision tree algorith	nm using an appropriate da	ataset for				
5	Build an Artificial Neural Network suitable datasets.	ork by implementing the Back	kpropagation algorithm an	nd test it with				
6	Implement a KNN algorithm for predict continuous values based	r regression tasks instead of cl on the average of the nearest	lassification. Use a small on neighbors	dataset, and				
7	Create a program that calculates points in a dataset. Allow the us	different distance metrics (Euler to input two points and disp	uclidean and Manhattan) l play the calculated distanc	between two ces				
8	 8 Implement the k-Nearest Neighbor algorithm to classify the Iris dataset, printing both correct and incorrect predictions. 							
9	Develop a program to implement the non-parametric Locally Weighted Regression algorithm, fitting data points and visualizing results.							
¹⁰ Implement a Q-learning algorithm to navigate a simple grid environment, defining the reward structure and analyzing agent performance.								
Laborato	ry Outcomes: The student should nt and demonstrate AI algorithms.	d be able to:						

Evaluate different algorithms.

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

PCCL - 1 Credit Course – Laboratory

<u>CIE - Practical Component (50 Marks) + SEE - Practical Component (50 Marks)</u>

CIE - Practical Component (50 Marks)							
Lab Conduction	Average of 10 Experiments - Conduction (10)+ Record (10)+ VIVA (10)	30					
Practical Internal Test	Conducted after all lab sessions	20					
Total	Sum of Lab conduction & Practical Internal Test	50					
Passing Criteria	Minimum 50% in CIE - Practical (25/50)						

SEE - Practical Component (100 Marks)

Practical Exam	Write up + Execution + Report + VIVA	100
Passing Criteria	Minimum 50% in SEE - Practical (25/50)	
	(Scaled Down to 50 : Minimum marks : 25/50	

Passing Criteria for CIE +SEE (Lab)	The student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.
--	---

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Semester I									
Research Methodology and IPR									
Category: NCMC									
Stream: Computer Science and Engineering (M.Tech)									
(Theory)									
Course Code	:	P24MTC107	CIE	:	-				
Teaching Hours L:P:SDA	:	Online	SEE	:	-				
Total Hours	:	-	Total	:	-				
Credits		-	SEE Duration	:	-				

P24MTC107 -Research Methodology and IPR- None Credit Mandatory Course (NCMC) if students have not studied this course in their undergraduate program then he /she has to take this course at http://online.vtu.ac.in and to qualify for this course is compulsory before completion of the minimum duration of the program (Two years), however, this course will not be considered for vertical progression.

 Web links and Video lectures (e-Resources)

 1. https://www.youtube.com/watch?v=A7oioOJ4g0Y&list=PLVf5enqoJ-yVQ2RXUl6mCfLPf3J_JUfoc